Spiked Models in Large Random Matrices and two statistical applications

Jamal Najim
najim@univ-mlv.fr

CNRS \& Université Paris Est

Linstat - Linköping, Sweden - August 2014

Introduction
Large Random Matrices
Objectives
Basic technical means

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Large covariance matrices I

The model

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

- Let \mathbf{R}_{N} be a deterministic $N \times N$ nonnegative definite hermitian matrix.
- Consider

$$
\mathbf{Y}_{N}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N}
$$

Large covariance matrices I

The model

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

- Let \mathbf{R}_{N} be a deterministic $N \times N$ nonnegative definite hermitian matrix.
- Consider

$$
\mathbf{Y}_{N}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N}
$$

Matrix \mathbf{Y}_{N} is a n-sample of N-dimensional vectors:

$$
\mathbf{Y}_{N}=\left[\begin{array}{lll}
\mathbf{Y}_{\cdot 1} & \cdots & \mathbf{Y}_{\cdot n}
\end{array}\right] \quad \text { with } \quad \mathbf{Y}_{\cdot 1}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{\cdot 1} \quad \text { and } \quad \mathbb{E} \mathbf{Y}_{\cdot 1} \mathbf{Y}_{\cdot 1}^{*}=\mathbf{R}_{N} .
$$

- \mathbf{R}_{N} often called Population covariance matrix.

Large covariance matrices I

The model

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

- Let \mathbf{R}_{N} be a deterministic $N \times N$ nonnegative definite hermitian matrix.
- Consider

$$
\mathbf{Y}_{N}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N}
$$

Matrix \mathbf{Y}_{N} is a n-sample of N-dimensional vectors:

$$
\mathbf{Y}_{N}=\left[\begin{array}{lll}
\mathbf{Y}_{\cdot 1} & \cdots & \mathbf{Y}_{\cdot n}
\end{array}\right] \quad \text { with } \quad \mathbf{Y}_{\cdot 1}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{\cdot 1} \quad \text { and } \quad \mathbb{E} \mathbf{Y}_{\cdot 1} \mathbf{Y}_{\cdot 1}^{*}=\mathbf{R}_{N}
$$

- \mathbf{R}_{N} often called Population covariance matrix.

Objective

$$
\text { To understand the spectrum of } \frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}
$$

as

$$
N, n \rightarrow \infty \quad \Leftrightarrow \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Large covariance matrices II

Large covariance matrices II

Remarks

1. The asymptotic regime $N, n \rightarrow \infty$ and $\frac{N}{n} \rightarrow c \in(0, \infty)$ corresponds to the case where the data dimension is of the same order as the number of available samples.

Large covariance matrices II

Remarks

1. The asymptotic regime $N, n \rightarrow \infty$ and $\frac{N}{n} \rightarrow c \in(0, \infty)$ corresponds to the case where the data dimension is of the same order as the number of available samples.
2. If N fixed and $n \rightarrow \infty$ (small data, large samples) then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*} \longrightarrow \mathbf{R}_{N}
$$

Large covariance matrices II

Remarks

1. The asymptotic regime $N, n \rightarrow \infty$ and $\frac{N}{n} \rightarrow c \in(0, \infty)$ corresponds to the case where the data dimension is of the same order as the number of available samples.
2. If N fixed and $n \rightarrow \infty$ (small data, large samples) then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*} \longrightarrow \mathbf{R}_{N}
$$

The spectral measure of a matrix \mathbf{A}
.. also called the empirical measure of the eigenvalues
If \mathbf{A} is $N \times N$ hermitian with eigenvalues $\lambda_{1}, \cdots, \lambda_{N}$ then its spectral measure is:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}(\mathbf{A})}
$$

Large covariance matrices II

Remarks

1. The asymptotic regime $N, n \rightarrow \infty$ and $\frac{N}{n} \rightarrow c \in(0, \infty)$ corresponds to the case where the data dimension is of the same order as the number of available samples.
2. If N fixed and $n \rightarrow \infty$ (small data, large samples) then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*} \longrightarrow \mathbf{R}_{N}
$$

The spectral measure of a matrix \mathbf{A}
.. also called the empirical measure of the eigenvalues
If \mathbf{A} is $N \times N$ hermitian with eigenvalues $\lambda_{1}, \cdots, \lambda_{N}$ then its spectral measure is:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}(\mathbf{A})} \quad \Rightarrow \quad L_{N}([a, b])=\frac{\#\left\{\lambda_{i}(\mathbf{A}) \in[a, b]\right\}}{N}
$$

Large covariance matrices II

Remarks

1. The asymptotic regime $N, n \rightarrow \infty$ and $\frac{N}{n} \rightarrow c \in(0, \infty)$ corresponds to the case where the data dimension is of the same order as the number of available samples.
2. If N fixed and $n \rightarrow \infty$ (small data, large samples) then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*} \longrightarrow \mathbf{R}_{N}
$$

The spectral measure of a matrix \mathbf{A}
.. also called the empirical measure of the eigenvalues
If \mathbf{A} is $N \times N$ hermitian with eigenvalues $\lambda_{1}, \cdots, \lambda_{N}$ then its spectral measure is:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}(\mathbf{A})} \quad \Rightarrow \quad L_{N}([a, b])=\frac{\#\left\{\lambda_{i}(\mathbf{A}) \in[a, b]\right\}}{N}
$$

Otherwise stated

$$
L_{N}([a, b]) \text { is the proportion of eigenvalues of } \mathbf{A} \text { in }[a, b] .
$$

Introduction
Large Random Matrices
Objectives
Basic technical means

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Objectives of this talk

1. to describe the limiting spectral properties of the large covariance matrix

$$
\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}=\frac{1}{n} \mathbf{R}_{n}^{1 / 2} \mathbf{X}_{n} \mathbf{X}_{n}^{*} \mathbf{R}_{n}^{1 / 2}
$$

Objectives of this talk

1. to describe the limiting spectral properties of the large covariance matrix

$$
\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}=\frac{1}{n} \mathbf{R}_{n}^{1 / 2} \mathbf{X}_{n} \mathbf{X}_{n}^{*} \mathbf{R}_{n}^{1 / 2}
$$

2. to study a particular class of covariance matrix models: spiked models, for which one or several eigenvalues are clearly separated from the mass of the other eigenvalues.

Objectives of this talk

1. to describe the limiting spectral properties of the large covariance matrix

$$
\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}=\frac{1}{n} \mathbf{R}_{n}^{1 / 2} \mathbf{X}_{n} \mathbf{X}_{n}^{*} \mathbf{R}_{n}^{1 / 2}
$$

2. to study a particular class of covariance matrix models: spiked models, for which one or several eigenvalues are clearly separated from the mass of the other eigenvalues.
3. to present two applications of these results in statistical signal processing: signal detection and direction of arrival estimation.

Introduction
Large Random Matrices
Objectives
Basic technical means

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Spectrum and eigenvectors analysis

The resolvent

- The resolvent of \mathbf{A} is $\mathbf{Q}(z)=(\mathbf{A}-z \mathbf{I})^{-1}$

Spectrum and eigenvectors analysis

The resolvent

- The resolvent of \mathbf{A} is $\mathbf{Q}(z)=(\mathbf{A}-z \mathbf{I})^{-1}$
- its singularities are exactly eigenvalues of \mathbf{A}.

Spectrum and eigenvectors analysis

The resolvent

- The resolvent of \mathbf{A} is $\mathbf{Q}(z)=(\mathbf{A}-z \mathbf{I})^{-1}$
- its singularities are exactly eigenvalues of \mathbf{A}.
- Problem: if size of \mathbf{A} big, then size of \mathbf{Q} big as well.

Spectrum and eigenvectors analysis

The resolvent

- The resolvent of \mathbf{A} is $\mathbf{Q}(z)=(\mathbf{A}-z \mathbf{I})^{-1}$
- its singularities are exactly eigenvalues of \mathbf{A}.
- Problem: if size of \mathbf{A} big, then size of \mathbf{Q} big as well.

The normalized trace of the resolvent

- Function

$$
g_{n}(z)=\frac{1}{N} \operatorname{Trace}(\mathbf{A}-z \mathbf{I})^{-1}
$$

provides information on the spectrum of \mathbf{A}.

- It is the Stieltjes transform of the spectral measure of \mathbf{A} (cf. supra)

Spectrum analysis: The Stieltjes Transform

Given a probability \mathbb{P}, its Stieltjes transform is defined by

$$
g(z)=\int_{\mathbb{R}} \frac{\mathbb{P}(d \lambda)}{\lambda-z}, \quad z \in \mathbb{C}^{+}
$$

Spectrum analysis: The Stieltjes Transform

Given a probability \mathbb{P}, its Stieltjes transform is defined by

$$
g(z)=\int_{\mathbb{R}} \frac{\mathbb{P}(d \lambda)}{\lambda-z}, \quad z \in \mathbb{C}^{+}
$$

with inverse formula

$$
\int f d \mathbb{P}=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{\mathbb{R}} f(x) g(x+\mathbf{i} y) d x
$$

for f bounded continuous.

Spectrum analysis: The Stieltjes Transform

Given a probability \mathbb{P}, its Stieltjes transform is defined by

$$
g(z)=\int_{\mathbb{R}} \frac{\mathbb{P}(d \lambda)}{\lambda-z}, \quad z \in \mathbb{C}^{+}
$$

with inverse formula

$$
\int f d \mathbb{P}=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{\mathbb{R}} f(x) g(x+\mathbf{i} y) d x
$$

for f bounded continuous.

Properties

1. Convergence in distribution is characterized by pointwise convergence of Stieltjes transforms:

$$
\mathbb{P}_{n} \xrightarrow[n \rightarrow \infty]{\mathcal{D}} \mathbb{P} \quad \Leftrightarrow \quad \forall z \in \mathbb{C}^{+}, \quad g_{n}(z)=\int \frac{\mathbb{P}_{n}(d \lambda)}{\lambda-z} \quad \underset{n \rightarrow \infty}{ } \quad g(z)=\int \frac{\mathbb{P}(d \lambda)}{\lambda-z}
$$

Spectrum analysis: The Stieltjes Transform

Given a probability \mathbb{P}, its Stieltjes transform is defined by

$$
g(z)=\int_{\mathbb{R}} \frac{\mathbb{P}(d \lambda)}{\lambda-z}, \quad z \in \mathbb{C}^{+}
$$

with inverse formula

$$
\int f d \mathbb{P}=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{\mathbb{R}} f(x) g(x+\mathbf{i} y) d x
$$

for f bounded continuous.

Properties

1. Convergence in distribution is characterized by pointwise convergence of Stieltjes transforms:

$$
\mathbb{P}_{n} \xrightarrow[n \rightarrow \infty]{\mathcal{D}} \mathbb{P} \quad \Leftrightarrow \quad \forall z \in \mathbb{C}^{+}, \quad g_{n}(z)=\int \frac{\mathbb{P}_{n}(d \lambda)}{\lambda-z} \quad \underset{n \rightarrow \infty}{ } \quad g(z)=\int \frac{\mathbb{P}(d \lambda)}{\lambda-z}
$$

2. Spectral measure:

$$
\mathbb{P}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}(\mathbf{A})} \Rightarrow g_{n}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}(\mathbf{A})-z}=\frac{1}{N} \operatorname{Trace}(\mathbf{A}-z \mathbf{I})^{-1}
$$

Spectrum analysis: The Stieltjes Transform

Given a probability \mathbb{P}, its Stieltjes transform is defined by

$$
g(z)=\int_{\mathbb{R}} \frac{\mathbb{P}(d \lambda)}{\lambda-z}, \quad z \in \mathbb{C}^{+}
$$

with inverse formula

$$
\int f d \mathbb{P}=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{\mathbb{R}} f(x) g(x+\mathbf{i} y) d x
$$

for f bounded continuous.

Properties

1. Convergence in distribution is characterized by pointwise convergence of Stieltjes transforms:

$$
\mathbb{P}_{n} \xrightarrow[n \rightarrow \infty]{\mathcal{D}} \mathbb{P} \quad \Leftrightarrow \quad \forall z \in \mathbb{C}^{+}, \quad g_{n}(z)=\int \frac{\mathbb{P}_{n}(d \lambda)}{\lambda-z} \quad \overrightarrow{n \rightarrow \infty} \quad g(z)=\int \frac{\mathbb{P}(d \lambda)}{\lambda-z}
$$

2. Spectral measure:

$$
\mathbb{P}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}(\mathbf{A})} \Rightarrow g_{n}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}(\mathbf{A})-z}=\frac{1}{N} \operatorname{Trace}(\mathbf{A}-z \mathbf{I})^{-1}
$$

The Stieltjes transfom g_{n} is the normalized trace of the resolvent $(\mathbf{A}-z \mathbf{I})^{-1}$

Introduction

Large covariance matrices
Wishart matrices and Marčenko-Pastur's theorem
The general covariance model

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Wishart Matrices

The model

- We first focus on covariance matrices in the case where $\mathbf{R}_{N}=\sigma^{2} \mathbf{I}_{N}$.

Wishart Matrices

The model

- We first focus on covariance matrices in the case where $\mathbf{R}_{N}=\sigma^{2} \mathbf{I}_{N}$.
- Hence \mathbf{Y}_{N} is a $N \times n$ matrix with i.i.d. entries $\mathbb{E} Y_{i j}=0, \quad \mathbb{E}\left|Y_{i j}\right|^{2}=\sigma^{2}$.

Wishart Matrices

The model

- We first focus on covariance matrices in the case where $\mathbf{R}_{N}=\sigma^{2} \mathbf{I}_{N}$.
- Hence \mathbf{Y}_{N} is a $N \times n$ matrix with i.i.d. entries $\mathbb{E} Y_{i j}=0, \quad \mathbb{E}\left|Y_{i j}\right|^{2}=\sigma^{2}$.
- Matrix $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ is a Wishart matrix.

Wishart Matrices

The model

- We first focus on covariance matrices in the case where $\mathbf{R}_{N}=\sigma^{2} \mathbf{I}_{N}$.
- Hence \mathbf{Y}_{N} is a $N \times n$ matrix with i.i.d. entries $\mathbb{E} Y_{i j}=0, \quad \mathbb{E}\left|Y_{i j}\right|^{2}=\sigma^{2}$.
- Matrix $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ is a Wishart matrix.

The standard case $N \ll n$
Assume N fixed and $n \rightarrow \infty$ (small data, large sample).

Wishart Matrices

The model

- We first focus on covariance matrices in the case where $\mathbf{R}_{N}=\sigma^{2} \mathbf{I}_{N}$.
- Hence \mathbf{Y}_{N} is a $N \times n$ matrix with i.i.d. entries $\mathbb{E} Y_{i j}=0, \quad \mathbb{E}\left|Y_{i j}\right|^{2}=\sigma^{2}$.
- Matrix $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ is a Wishart matrix.

The standard case $N \ll n$

Assume N fixed and $n \rightarrow \infty$ (small data, large sample). Since

$$
\mathbb{E} \mathbf{Y}_{\cdot 1} \mathbf{Y}_{\cdot 1}^{*}=\sigma^{2} \mathbf{I}_{N}
$$

L.L.N implies

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{\cdot i} \mathbf{Y}_{\cdot i}^{*} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \quad \sigma^{2} \mathbf{I}_{N}
$$

Wishart Matrices

The model

- We first focus on covariance matrices in the case where $\mathbf{R}_{N}=\sigma^{2} \mathbf{I}_{N}$.
- Hence \mathbf{Y}_{N} is a $N \times n$ matrix with i.i.d. entries $\mathbb{E} Y_{i j}=0, \quad \mathbb{E}\left|Y_{i j}\right|^{2}=\sigma^{2}$.
- Matrix $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ is a Wishart matrix.

The standard case $N \ll n$

Assume N fixed and $n \rightarrow \infty$ (small data, large sample). Since

$$
\mathbb{E} \mathbf{Y}_{\cdot 1} \mathbf{Y}_{\cdot 1}^{*}=\sigma^{2} \mathbf{I}_{N}
$$

L.L.N implies

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{\cdot i} \mathbf{Y}_{\cdot i}^{*} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \quad \sigma^{2} \mathbf{I}_{N}
$$

In particular,

- all the eigenvalues of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ converge to σ^{2},

Wishart Matrices

The model

- We first focus on covariance matrices in the case where $\mathbf{R}_{N}=\sigma^{2} \mathbf{I}_{N}$.
- Hence \mathbf{Y}_{N} is a $N \times n$ matrix with i.i.d. entries $\mathbb{E} Y_{i j}=0, \quad \mathbb{E}\left|Y_{i j}\right|^{2}=\sigma^{2}$.
- Matrix $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ is a Wishart matrix.

The standard case $N \ll n$

Assume N fixed and $n \rightarrow \infty$ (small data, large sample). Since

$$
\mathbb{E} \mathbf{Y}_{\cdot 1} \mathbf{Y}_{\cdot 1}^{*}=\sigma^{2} \mathbf{I}_{N}
$$

L.L.N implies

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{\cdot i} \mathbf{Y}_{\cdot i}^{*} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \quad \sigma^{2} \mathbf{I}_{N}
$$

In particular,

- all the eigenvalues of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ converge to σ^{2},
- equivalently, the spectral measure of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ converges to $\delta_{\sigma^{2}}$.

Marčenko-Pastur theorem

Theorem

- Consider the spectral measure L_{N} :

Marčenko-Pastur theorem

Theorem

- Consider the spectral measure L_{N} :

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

Marčenko-Pastur theorem

Theorem

- Consider the spectral measure L_{N} :

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

- Then almost surely (= for almost every realization)

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\text {MP }} \quad \text { in distribution as } \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty)
$$

Marčenko-Pastur theorem

Theorem

- Consider the spectral measure L_{N} :

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

- Then almost surely (= for almost every realization)

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\text {MP }} \quad \text { in distribution as } \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty)
$$

where $\mathbb{P}_{\check{M} P}$ is Marčenko-Pastur distribution:

Marčenko-Pastur theorem

Theorem

- Consider the spectral measure L_{N} :

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

- Then almost surely (= for almost every realization)

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\text {MPP }} \quad \text { in distribution as } \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty)
$$

where $\mathbb{P}_{\check{M} P}$ is Marčenko-Pastur distribution:

$$
\mathbb{P}_{\mathrm{M}_{\mathrm{M}}}(d x)=\left(1-\frac{1}{c}\right)^{+} \delta_{0}(d x)+\frac{\sqrt{(b-x)(x-a)}}{2 \pi \sigma^{2} x c} 1_{[a, b]}(x) d x
$$

with

$$
\left\{\begin{array}{l}
a=\sigma^{2}(1-\sqrt{c})^{2} \\
b=\sigma^{2}(1+\sqrt{c})^{2}
\end{array}\right.
$$

Histogram for Wishart matrices

Matrix model: Wishart matrix
Consider the spectrum of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Plot the histogram of its eigenvalues.

Histogram for Wishart matrices

Wishart Matrix, $N=4, n=10$

Matrix model: Wishart matrix

Consider the spectrum of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Plot the histogram of its eigenvalues.

Figure: Spectrum's histogram $-\frac{N}{n}=0.7$

Histogram for Wishart matrices

Wishart Matrix, $\mathrm{N}=\mathbf{4 0 , n = 1 0 0}$

Matrix model: Wishart matrix

Consider the spectrum of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Plot the histogram of its eigenvalues.

Figure: Spectrum's histogram $-\frac{N}{n}=0.7$

Wishart Matrix, $N=200, n=500$

Matrix model: Wishart matrix
Consider the spectrum of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Plot the histogram of its eigenvalues.

Figure: Spectrum's histogram $-\frac{N}{n}=0.7$

Matrix model: Wishart matrix
Consider the spectrum of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Plot the histogram of its eigenvalues.

Figure : Spectrum's histogram $-\frac{N}{n}=0.7$

Matrix model: Wishart matrix

Consider the spectrum of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Plot the histogram of its eigenvalues.

Figure: Spectrum's histogram $-\frac{N}{n}=0.7$

Histogram for Wishart matrices: Marčenko-Pastur's theorem

Wishart Matrix, $\mathrm{N}=1600$, $\mathrm{n}=4000$

Matrix model: Wishart matrix

Consider the spectrum of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

Plot the histogram of its eigenvalues.

Figure: Marčenko-Pastur's distribution (in red)

Marčenko-Pastur's theorem (1967)

> "The histogram of a Large Covariance Matrix converges to Marčenko-Pastur distribution with given parameter (here $\mathbf{0 . 7}$)"

Elements of proof

1. Convergence of the Stieltjes transform.

Elements of proof

1. Convergence of the Stieltjes transform. Since

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\text {M̄P }} \quad \Longleftrightarrow g_{n}(z) \xrightarrow[N, n \rightarrow \infty]{ } S T\left(\mathbb{P}_{\overline{\mathrm{M} P}}\right)
$$

we prove the convergence of g_{n}.

Elements of proof

1. Convergence of the Stieltjes transform. Since

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\check{\mathrm{M} P}} \quad \Longleftrightarrow \quad g_{n}(z) \xrightarrow[N, n \rightarrow \infty]{ } S T\left(\mathbb{P}_{\check{\mathrm{MP}}}\right)
$$

we prove the convergence of g_{n}.
2. After algebraic manipulations and probabilistic arguments, we prove that

$$
g_{n}(z) \approx \frac{1}{\sigma^{2}\left(1-c_{n}\right)-z-z \sigma^{2} c_{n} g_{n}(z)}
$$

Elements of proof

1. Convergence of the Stieltjes transform. Since

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\check{\mathrm{M} P}} \quad \Longleftrightarrow \quad g_{n}(z) \xrightarrow[N, n \rightarrow \infty]{ } S T\left(\mathbb{P}_{\check{\mathrm{MP}}}\right)
$$

we prove the convergence of g_{n}.
2. After algebraic manipulations and probabilistic arguments, we prove that

$$
g_{n}(z) \approx \frac{1}{\sigma^{2}\left(1-c_{n}\right)-z-z \sigma^{2} c_{n} g_{n}(z)}
$$

3. Necessarily,

$$
g_{n} \xrightarrow[N, n \rightarrow \infty]{ } \mathbf{g}_{\text {M̌P }}
$$

which satisfies the fixed point equation:

$$
\mathbf{g}_{\check{\mathrm{M}}}(z)=\frac{1}{\sigma^{2}(1-c)-z-z \sigma^{2} c \mathbf{g}_{\check{M} \mathrm{P}}(z)}
$$

Elements of proof

1. Convergence of the Stieltjes transform. Since

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\check{\mathrm{M} P}} \quad \Longleftrightarrow \quad g_{n}(z) \xrightarrow[N, n \rightarrow \infty]{ } S T\left(\mathbb{P}_{\check{\mathrm{MP}}}\right)
$$

we prove the convergence of g_{n}.
2. After algebraic manipulations and probabilistic arguments, we prove that

$$
g_{n}(z) \approx \frac{1}{\sigma^{2}\left(1-c_{n}\right)-z-z \sigma^{2} c_{n} g_{n}(z)}
$$

3. Necessarily,

$$
g_{n} \xrightarrow[N, n \rightarrow \infty]{ } \mathbf{g}_{\text {M̌P }}
$$

which satisfies the fixed point equation:

$$
\mathbf{g}_{\check{\mathrm{M}}}(z)=\frac{1}{\sigma^{2}(1-c)-z-z \sigma^{2} c \mathbf{g}_{\check{M} \mathrm{P}}(z)}
$$

4. Solving explicitely the previous equation, we identify

$$
\mathbb{P}_{\check{\mathrm{M} P}}=(\text { Stieltjes Transform })^{-1}\left(\mathbf{g}_{\mathrm{M} P}\right)
$$

Introduction

Large covariance matrices
Wishart matrices and Marčenko-Pastur's theorem
The general covariance model

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Theorem

Recall the notations

$$
\mathbf{Y}_{n}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad g_{n}(z)=\frac{1}{N} \operatorname{Trace}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

We are interested in the limiting behaviour of

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \quad \text { with } \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

Canonical equation

- Unknown \mathbf{t}_{N} is a Stieltjes transform, solution of

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

Theorem

Recall the notations

$$
\mathbf{Y}_{n}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad g_{n}(z)=\frac{1}{N} \operatorname{Trace}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

We are interested in the limiting behaviour of

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \quad \text { with } \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

Canonical equation

- Unknown \mathbf{t}_{N} is a Stieltjes transform, solution of

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

- Consider associated probability \mathbb{P}_{N} defined by

$$
\mathbb{P}_{N}=(\text { Stieltjes transform })^{-1}\left(\mathbf{t}_{N}\right) \quad \text { i.e. } \quad \mathbf{t}_{N}(z)=\int \frac{\mathbb{P}_{N}(d \lambda)}{\lambda-z}
$$

Theorem

Recall the notations

$$
\mathbf{Y}_{n}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad g_{n}(z)=\frac{1}{N} \operatorname{Trace}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

We are interested in the limiting behaviour of

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \quad \text { with } \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

Canonical equation

- Unknown \mathbf{t}_{N} is a Stieltjes transform, solution of

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

- Consider associated probability \mathbb{P}_{N} defined by

$$
\mathbb{P}_{N}=(\text { Stieltjes transform })^{-1}\left(\mathbf{t}_{N}\right) \quad \text { i.e. } \quad \mathbf{t}_{N}(z)=\int \frac{\mathbb{P}_{N}(d \lambda)}{\lambda-z}
$$

Convergence

- Then \mathbf{t}_{N} and \mathbb{P}_{N} are the determinitic equivalents of g_{n} and L_{N} :

Theorem

Recall the notations

$$
\mathbf{Y}_{n}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad g_{n}(z)=\frac{1}{N} \operatorname{Trace}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

We are interested in the limiting behaviour of

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \quad \text { with } \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

Canonical equation

- Unknown \mathbf{t}_{N} is a Stieltjes transform, solution of

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

- Consider associated probability \mathbb{P}_{N} defined by

$$
\mathbb{P}_{N}=(\text { Stieltjes transform })^{-1}\left(\mathbf{t}_{N}\right) \quad \text { i.e. } \quad \mathbf{t}_{N}(z)=\int \frac{\mathbb{P}_{N}(d \lambda)}{\lambda-z}
$$

Convergence

- Then \mathbf{t}_{N} and \mathbb{P}_{N} are the determinitic equivalents of g_{n} and L_{N} :

$$
g_{N}(z)-\mathbf{t}_{N}(z) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} 0
$$

Theorem

Recall the notations

$$
\mathbf{Y}_{n}=\mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad g_{n}(z)=\frac{1}{N} \operatorname{Trace}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

We are interested in the limiting behaviour of

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \quad \text { with } \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)
$$

Canonical equation

- Unknown \mathbf{t}_{N} is a Stieltjes transform, solution of

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

- Consider associated probability \mathbb{P}_{N} defined by

$$
\mathbb{P}_{N}=(\text { Stieltjes transform })^{-1}\left(\mathbf{t}_{N}\right) \quad \text { i.e. } \quad \mathbf{t}_{N}(z)=\int \frac{\mathbb{P}_{N}(d \lambda)}{\lambda-z}
$$

Convergence

- Then \mathbf{t}_{N} and \mathbb{P}_{N} are the determinitic equivalents of g_{n} and L_{N} :

$$
g_{N}(z)-\mathbf{t}_{N}(z) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} 0 \quad \text { and } \quad \frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\right)-\int f(\lambda) \mathbb{P}_{N}(d \lambda) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} 0
$$

Remark

Assume moreover that

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(\mathbf{R}_{\mathbf{N}}\right)} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}^{\mathbf{R}}
$$

Remark

Assume moreover that

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(\mathbf{R}_{\mathbf{N}}\right)} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}^{\mathbf{R}}
$$

Then instead of having a series of canonical equations depending on N :

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

Remark

Assume moreover that

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(\mathbf{R}_{\mathbf{N}}\right)} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}^{\mathbf{R}}
$$

Then instead of having a series of canonical equations depending on N :

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

we can obtain a "limiting equation"

$$
\mathbf{t}(z)=\int \frac{\mathbb{P}^{\mathbf{R}}(d \lambda)}{(1-c) \lambda-z-z c \mathbf{t}(z) \lambda} \quad \text { where } \quad \mathbf{t}(z)=\int \frac{\mathbb{P}_{\infty}(d \lambda)}{\lambda-z}
$$

Remark

Assume moreover that

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(\mathbf{R}_{\mathbf{N}}\right)} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}^{\mathbf{R}}
$$

Then instead of having a series of canonical equations depending on N :

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

we can obtain a "limiting equation"

$$
\mathbf{t}(z)=\int \frac{\mathbb{P}^{\mathbf{R}}(d \lambda)}{(1-c) \lambda-z-z c \mathbf{t}(z) \lambda} \quad \text { where } \quad \mathbf{t}(z)=\int \frac{\mathbb{P}_{\infty}(d \lambda)}{\lambda-z}
$$

and genuine limits

$$
g_{N}(z) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \mathbf{t}(z)
$$

Remark

Assume moreover that

$$
\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(\mathbf{R}_{\mathbf{N}}\right)} \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}^{\mathbf{R}}
$$

Then instead of having a series of canonical equations depending on N :

$$
\mathbf{t}_{N}(z)=\frac{1}{N} \operatorname{Trace}\left[\left(1-c_{n}\right) \mathbf{R}_{N}-z \mathbf{I}_{N}-z c_{n} \mathbf{t}_{N}(z) \mathbf{R}_{N}\right]^{-1}
$$

we can obtain a "limiting equation"

$$
\mathbf{t}(z)=\int \frac{\mathbb{P}^{\mathbf{R}}(d \lambda)}{(1-c) \lambda-z-z c \mathbf{t}(z) \lambda} \quad \text { where } \quad \mathbf{t}(z)=\int \frac{\mathbb{P}_{\infty}(d \lambda)}{\lambda-z}
$$

and genuine limits

$$
\begin{array}{cl}
g_{N}(z) & \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \\
\mathbf{t}(z), \\
\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\right) & \underset{N, n \rightarrow \infty}{\text { a.s. }} \int f(\lambda) \mathbb{P}_{\infty}(d \lambda),
\end{array}
$$

where the λ_{i} 's are the eigenvalues of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$

Simulations

- Consider the distribution

$$
\mathbb{P}^{\mathbf{R}}=\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{3}+\frac{1}{3} \delta_{7}
$$

corresponding to a covariance matrix

$$
\mathbf{R}_{N}=\operatorname{diag}(1,3,7)
$$

each with multiplicity $\approx \frac{N}{3}$.

- We plot hereafter the limiting spectral distribution

$$
\mathbb{P}_{\infty}
$$

for different values of c.

$$
\mathbf{t}(z)=\frac{\mathbf{1}}{\mathbf{3}}\left\{\frac{1}{(1-c) \boldsymbol{\lambda}_{1}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{1}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{2}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{2}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{3}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{3}}\right\}
$$

Simulations

Large Covariance Matrices - Limiting Density (LSD)

- Consider the distribution

$$
\mathbb{P}^{\mathbf{R}}=\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{3}+\frac{1}{3} \delta_{7}
$$

corresponding to a covariance matrix

$$
\mathbf{R}_{N}=\operatorname{diag}(1,3,7)
$$

each with multiplicity $\approx \frac{N}{3}$.

- We plot hereafter the limiting spectral distribution

$$
\mathbb{P}_{\infty}
$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.01$

$$
\mathbf{t}(z)=\frac{1}{3}\left\{\frac{1}{(1-c) \boldsymbol{\lambda}_{1}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{1}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{2}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{2}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{3}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{3}}\right\}
$$

Simulations

Large Covariance Matrices - Limiting Density (LSD)

- Consider the distribution

$$
\mathbb{P}^{\mathbf{R}}=\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{3}+\frac{1}{3} \delta_{7}
$$

corresponding to a covariance matrix

$$
\mathbf{R}_{N}=\operatorname{diag}(1,3,7)
$$

each with multiplicity $\approx \frac{N}{3}$.

- We plot hereafter the limiting spectral distribution

$$
\mathbb{P}_{\infty}
$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.1$

$$
\mathbf{t}(z)=\frac{\mathbf{1}}{\mathbf{3}}\left\{\frac{1}{(1-c) \boldsymbol{\lambda}_{1}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{1}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{2}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{2}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{3}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{3}}\right\}
$$

Simulations

- Consider the distribution

$$
\mathbb{P}^{\mathbf{R}}=\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{3}+\frac{1}{3} \delta_{7}
$$

corresponding to a covariance matrix

$$
\mathbf{R}_{N}=\operatorname{diag}(1,3,7)
$$

each with multiplicity $\approx \frac{N}{3}$.

- We plot hereafter the limiting spectral distribution

$$
\mathbb{P}_{\infty}
$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.25$

$$
\mathbf{t}(z)=\frac{1}{3}\left\{\frac{1}{(1-c) \boldsymbol{\lambda}_{1}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{1}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{2}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{2}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{3}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{3}}\right\}
$$

Simulations

Large Covariance Matrices - Limiting Density (LSD)

- Consider the distribution

$$
\mathbb{P}^{\mathbf{R}}=\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{3}+\frac{1}{3} \delta_{7}
$$

corresponding to a covariance matrix

$$
\mathbf{R}_{N}=\operatorname{diag}(1,3,7)
$$

each with multiplicity $\approx \frac{N}{3}$.

- We plot hereafter the limiting spectral distribution

$$
\mathbb{P}_{\infty}
$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.275$

$$
\mathbf{t}(z)=\frac{\mathbf{1}}{\mathbf{3}}\left\{\frac{1}{(1-c) \boldsymbol{\lambda}_{1}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{1}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{2}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{2}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{3}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{3}}\right\}
$$

Simulations

Large Covariance Matrices - Limiting Density (LSD)

- Consider the distribution

$$
\mathbb{P}^{\mathbf{R}}=\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{3}+\frac{1}{3} \delta_{7}
$$

corresponding to a covariance matrix

$$
\mathbf{R}_{N}=\operatorname{diag}(1,3,7)
$$

each with multiplicity $\approx \frac{N}{3}$.

- We plot hereafter the limiting spectral distribution

$$
\mathbb{P}_{\infty}
$$

for different values of c.

Figure : Plot of the Limiting Spectral Measure for $c=0.35$

$$
\mathbf{t}(z)=\frac{\mathbf{1}}{\mathbf{3}}\left\{\frac{1}{(1-c) \boldsymbol{\lambda}_{1}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{1}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{2}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{2}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{3}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{3}}\right\}
$$

Simulations

Large Covariance Matrices - Limiting Density (LSD)

- Consider the distribution

$$
\mathbb{P}^{\mathbf{R}}=\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{3}+\frac{1}{3} \delta_{7}
$$

corresponding to a covariance matrix

$$
\mathbf{R}_{N}=\operatorname{diag}(1,3,7)
$$

each with multiplicity $\approx \frac{N}{3}$.

- We plot hereafter the limiting spectral distribution

$$
\mathbb{P}_{\infty}
$$

for different values of c.

Figure: Plot of the Limiting Spectral Measure for $c=0.6$

$$
\mathbf{t}(z)=\frac{\mathbf{1}}{\mathbf{3}}\left\{\frac{1}{(1-c) \boldsymbol{\lambda}_{1}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{1}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{2}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{2}}+\frac{1}{(1-c) \boldsymbol{\lambda}_{3}-z-z c \mathbf{t}(z) \boldsymbol{\lambda}_{3}}\right\}
$$

Introduction

Large covariance matrices

Spiked models

Introduction and objective
The limiting spectral measure
The largest eigenvalue
The eigenvector associated to $\lambda_{\text {max }}$ Spiked models: Summary

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Introduction

Large covariance matrices

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
The eigenvector associated to $\lambda_{\max }$ Spiked models: Summary

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Introduction

The largest eigenvalue in M̌P model
Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=\sigma^{2}$,

Introduction

The largest eigenvalue in M̌P model

Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=\sigma^{2}$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\text {MPP }}
$$

where $\mathbb{P}_{\check{M} P}$ has support

$$
\mathcal{S}_{\check{\mathrm{M} P}}=\{0\} \cup \underbrace{\left[\sigma^{2}(1-\sqrt{c})^{2}, \sigma^{2}(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)

Introduction

The largest eigenvalue in M̌P model
Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=\sigma^{2}$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\text {Mי }}
$$

where $\mathbb{P}_{\check{M} P}$ has support

$$
\mathcal{S}_{\text {M̌P }}=\{0\} \cup \underbrace{\left[\sigma^{2}(1-\sqrt{c})^{2}, \sigma^{2}(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)
Theorem

Introduction

The largest eigenvalue in M̌P model

Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=\sigma^{2}$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\mathrm{M} P}
$$

where $\mathbb{P}_{\check{M} P}$ has support

$$
\mathcal{S}_{\check{\mathrm{M} P}}=\{0\} \cup \underbrace{\left[\sigma^{2}(1-\sqrt{c})^{2}, \sigma^{2}(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)
Theorem

- Let $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$, then:

$$
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\sqrt{c})^{2} .
$$

Introduction

The largest eigenvalue in M̌P model

Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=\sigma^{2}$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mathbb{P}_{\mathrm{M} P}
$$

where $\mathbb{P}_{\check{M} P}$ has support

$$
\mathcal{S}_{\check{\mathrm{M} P}}=\{0\} \cup \underbrace{\left[\sigma^{2}(1-\sqrt{c})^{2}, \sigma^{2}(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)

Theorem

- Let $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$, then:

$$
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\sqrt{c})^{2} .
$$

Message: The largest eigenvalue converges to the right edge of the bulk.

```
N=800,n=2000,sqrt(c)=0.63, theta=[ 0.1 ]
```


Figure: The largest eigenvalue (red) converges to the right edge of the bulk

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

- where k is independent of the dimensions N, n.
- and the $\overrightarrow{\mathbf{u}}_{i}$'s are orthonormal

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

- where k is independent of the dimensions N, n.
- and the $\overrightarrow{\mathbf{u}}_{i}$'s are orthonormal

Consider

$$
\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}
$$

This model will be refered to as a (multiplicative) spiked model.

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

- where k is independent of the dimensions N, n.
- and the $\overrightarrow{\mathbf{u}}_{i}$'s are orthonormal

Consider

$$
\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}
$$

This model will be refered to as a (multiplicative) spiked model.
Think of Π_{N} as

$$
\boldsymbol{\Pi}_{N}=\left(\begin{array}{ccccc}
1+\theta_{1} & & & & \\
& \ddots & & & \\
& & 1+\theta_{k} & & \\
& & & 1 & \\
& & & & \ddots
\end{array}\right)
$$

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

- where k is independent of the dimensions N, n.
- and the $\overrightarrow{\mathbf{u}}_{i}$'s are orthonormal

Consider

$$
\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}
$$

This model will be refered to as a (multiplicative) spiked model.
Think of Π_{N} as

$$
\boldsymbol{\Pi}_{N}=\left(\begin{array}{ccccc}
1+\theta_{1} & & & & \\
& \ddots & & & \\
& & 1+\theta_{k} & & \\
& & & 1 & \\
& & & & \ddots
\end{array}\right)
$$

Very important: The number k of perturbations is finite

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{Y}_{N}=\frac{1}{n} \mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad \mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{Y}_{N}=\frac{1}{n} \mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad \mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{Y}_{N}=\frac{1}{n} \mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad \mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.
- Spiked models have been introduced by lain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis, Annals of Statistics, 2001.
to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{Y}_{N}=\frac{1}{n} \mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad \mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.
- Spiked models have been introduced by lain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis, Annals of Statistics, 2001.
to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- What is the influence of $\boldsymbol{\Pi}_{N}$ over the spectral limit of $L_{N}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$?

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{Y}_{N}=\frac{1}{n} \mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad \mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.
- Spiked models have been introduced by lain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis, Annals of Statistics, 2001.
to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- What is the influence of $\boldsymbol{\Pi}_{N}$ over the spectral limit of $L_{N}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$?
- What is the influence of $\boldsymbol{\Pi}_{N}$ over $\lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$?

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{Y}_{N}=\frac{1}{n} \mathbf{R}_{N}^{1 / 2} \mathbf{X}_{N} \quad \text { and } \quad \mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.
- Spiked models have been introduced by lain M. Johnstone in his paper

On the distribution of the largest eigenvalue in principal components analysis, Annals of Statistics, 2001.
to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- What is the influence of $\boldsymbol{\Pi}_{N}$ over the spectral limit of $L_{N}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$?
- What is the influence of Π_{N} over $\lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$?
- What is the influence of Π_{N} over the eigenvector $\overrightarrow{\mathbf{v}}_{\max }$ associated to $\lambda_{\max }$?

Simulations

Simulations

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[0.1]

Figure : Spiked model - strength of the perturbation $\theta=0.1$

Simulations

$\mathrm{N}=800, \mathrm{n}=2000$, sqrt(c)=0.63, theta=[2]

Figure : Spiked model - strength of the perturbation $\theta=2$

Simulations

$\mathrm{N}=800$, $\mathrm{n}=2000$, sqrt(c) $=0.63$, theta=[3]

Figure : Spiked model - strength of the perturbation $\theta=3$

Simulations

$\mathrm{N}=400, \mathrm{n}=1000, \mathrm{sqrt}(\mathrm{c})=0.63$, theta=[2,2.5]

Figure: Spiked model - Two spikes

Simulations

$\mathrm{N}=400, \mathrm{n}=1000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[2,2.3,2.8]

Figure: Spiked model - Three spikes

Simulations

$N=400, n=1000, \operatorname{sqrt}(c)=0.63$, theta $=[2,2.5,2.5,3]$

Figure: Spiked model - Multiple spikes

Introduction

Large covariance matrices

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
The eigenvector associated to $\lambda_{\max }$ Spiked models: Summary

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

The limiting spectral measure

Theorem
The following convergence holds true: $L_{N}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{a . s .} \mathbb{P}_{\text {M̌P }} \cdot$

The limiting spectral measure

Theorem
The following convergence holds true: $L_{N}\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{a . s .} \mathbb{P}_{\check{\mathrm{M} P}} \cdot$

Remark

The limiting spectral measure is not sensitive to the presence of spikes

Introduction

Large covariance matrices

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
The eigenvector associated to $\lambda_{\text {max }}$
Spiked models: Summary

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

The largest eigenvalue

We consider the following spiked model:

$$
\mathbf{Y}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

The largest eigenvalue

We consider the following spiked model:

$$
\mathbf{Y}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

The largest eigenvalue

We consider the following spiked model:

$$
\mathbf{Y}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.
Theorem
Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

The largest eigenvalue

We consider the following spiked model:

$$
\mathbf{Y}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.
Theorem
Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

- if $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }=\lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\sqrt{c})^{2}
$$

The largest eigenvalue

We consider the following spiked model:

$$
\mathbf{Y}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

- if $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }=\lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\sqrt{c})^{2}
$$

- if $\theta>\sqrt{c}$ then

$$
\lambda_{\max } \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\theta)\left(1+\frac{c}{\theta}\right)
$$

The largest eigenvalue

We consider the following spiked model:

$$
\mathbf{Y}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

- if $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }=\lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\sqrt{c})^{2}
$$

- if $\theta>\sqrt{c}$ then

$$
\lambda_{\max } \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}(1+\theta)\left(1+\frac{c}{\theta}\right)>\sigma^{2}(1+\sqrt{c})^{2}
$$

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- If $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \quad \xrightarrow[N, n \rightarrow \infty]{ } \sigma^{2}(1+\sqrt{c})^{2}
$$

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- If $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \quad \xrightarrow[N, n \rightarrow \infty]{ } \sigma^{2}(1+\sqrt{c})^{2}
$$

Below the threshold $\sqrt{c}, \lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ asymptotically sticks to the bulk.

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- if $\theta>\sqrt{c}$ then

$$
\lim _{N, n} \lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)=\sigma^{2}(1+\theta)\left(1+\frac{c}{\theta}\right)
$$

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- if $\theta>\sqrt{c}$ then

$$
\lim _{N, n} \lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)=\sigma^{2}(1+\theta)\left(1+\frac{c}{\theta}\right)>\sigma^{2}(1+\sqrt{c})^{2}
$$

Above the threshold $\sqrt{c}, \lambda_{\max }\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ asymptotically separates from the bulk.

Introduction

Large covariance matrices

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
The eigenvector associated to $\lambda_{\text {max }}$
Spiked models: Summary

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

The eigenvector associated to $\lambda_{\max }$ I

- Let:

$$
\begin{aligned}
\mathbf{Y}_{N} & =\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1 \\
& =\boldsymbol{\Pi}^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

The eigenvector associated to $\lambda_{\max } \mathrm{I}$

- Let:

$$
\begin{aligned}
\mathbf{Y}_{N} & =\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1 \\
& =\boldsymbol{\Pi}^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

- Let $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ be the eigenvector associated to $\lambda_{\text {max }}$:

$$
\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \overrightarrow{\boldsymbol{v}}_{\max }=\lambda_{\max } \overrightarrow{\boldsymbol{v}}_{\max }
$$

The eigenvector associated to $\lambda_{\max } \mathrm{I}$

- Let:

$$
\begin{aligned}
\mathbf{Y}_{N} & =\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1 \\
& =\boldsymbol{\Pi}^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

- Let $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ be the eigenvector associated to $\lambda_{\text {max }}$:

$$
\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \overrightarrow{\boldsymbol{v}}_{\max }=\lambda_{\max } \overrightarrow{\boldsymbol{v}}_{\max }
$$

Question

- What is the behavior of $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ as $N, n \rightarrow \infty$ in the regime where

$$
\frac{N}{n} \rightarrow c \in(0, \infty) ?
$$

The eigenvector associated to $\lambda_{\max } \mathrm{I}$

- Let:

$$
\begin{aligned}
\mathbf{Y}_{N} & =\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1 \\
& =\boldsymbol{\Pi}^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

- Let $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ be the eigenvector associated to $\lambda_{\text {max }}$:

$$
\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \overrightarrow{\boldsymbol{v}}_{\max }=\lambda_{\max } \overrightarrow{\boldsymbol{v}}_{\max }
$$

Question

- What is the behavior of $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ as $N, n \rightarrow \infty$ in the regime where

$$
\frac{N}{n} \rightarrow c \in(0, \infty) ?
$$

Reminder

Behaviour of largest eigenvalue $\lambda_{\max }$ well-understood:

The eigenvector associated to $\lambda_{\max }$ I

- Let:

$$
\begin{aligned}
\mathbf{Y}_{N} & =\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1 \\
& =\boldsymbol{\Pi}^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

- Let $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ be the eigenvector associated to $\lambda_{\text {max }}$:

$$
\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \overrightarrow{\boldsymbol{v}}_{\max }=\lambda_{\max } \overrightarrow{\boldsymbol{v}}_{\max }
$$

Question

- What is the behavior of $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ as $N, n \rightarrow \infty$ in the regime where

$$
\frac{N}{n} \rightarrow c \in(0, \infty) ?
$$

Reminder

Behaviour of largest eigenvalue $\lambda_{\max }$ well-understood:

- if $\theta \leq \sqrt{c}$ then $\lambda_{\max }$ converges to the right edge of M̌P bulk.

The eigenvector associated to $\lambda_{\max } I$

- Let:

$$
\begin{aligned}
\mathbf{Y}_{N} & =\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1 \\
& =\boldsymbol{\Pi}^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

- Let $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ be the eigenvector associated to $\lambda_{\text {max }}$:

$$
\left(\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right) \overrightarrow{\boldsymbol{v}}_{\max }=\lambda_{\max } \overrightarrow{\boldsymbol{v}}_{\max }
$$

Question

- What is the behavior of $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ as $N, n \rightarrow \infty$ in the regime where

$$
\frac{N}{n} \rightarrow c \in(0, \infty) ?
$$

Reminder

Behaviour of largest eigenvalue $\lambda_{\max }$ well-understood:

- if $\theta \leq \sqrt{c}$ then $\lambda_{\max }$ converges to the right edge of $\check{M} \mathbf{P}$ bulk.
- if $\theta>\sqrt{c}$ then $\lambda_{\text {max }}$ separates from the bulk.

The eigenvector associated to $\lambda_{\max }$ II

Preliminary observations

The eigenvector associated to $\lambda_{\max }$ II

Preliminary observations

1. Let N finite, $n \rightarrow \infty$, then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\boldsymbol{\Pi}^{1 / 2}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \boldsymbol{\Pi}^{1 / 2} \underset{n \rightarrow \infty}{ } \boldsymbol{\Pi}
$$

The eigenvector associated to $\lambda_{\text {max }}$ II

Preliminary observations

1. Let N finite, $n \rightarrow \infty$, then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\boldsymbol{\Pi}^{1 / 2}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \boldsymbol{\Pi}^{1 / 2} \underset{n \rightarrow \infty}{ } \boldsymbol{\Pi}
$$

As a consequence:

$$
\overrightarrow{\boldsymbol{v}}_{\max } \xrightarrow[n \rightarrow \infty]{ } \overrightarrow{\mathbf{u}}
$$

The eigenvector associated to $\lambda_{\text {max }}$ II

Preliminary observations

1. Let N finite, $n \rightarrow \infty$, then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\boldsymbol{\Pi}^{1 / 2}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \boldsymbol{\Pi}^{1 / 2} \underset{n \rightarrow \infty}{ } \boldsymbol{\Pi}
$$

As a consequence:

$$
\overrightarrow{\boldsymbol{v}}_{\max } \xrightarrow[n \rightarrow \infty]{ } \overrightarrow{\mathbf{u}}
$$

2. If

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c,
$$

then $\operatorname{dim}\left(\overrightarrow{\boldsymbol{v}}_{\max }\right)=N \nearrow \infty$.

The eigenvector associated to $\lambda_{\max }$ II

Preliminary observations

1. Let N finite, $n \rightarrow \infty$, then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\boldsymbol{\Pi}^{1 / 2}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \boldsymbol{\Pi}^{1 / 2} \underset{n \rightarrow \infty}{ } \boldsymbol{\Pi}
$$

As a consequence:

$$
\overrightarrow{\boldsymbol{v}}_{\max } \xrightarrow[n \rightarrow \infty]{ } \overrightarrow{\mathbf{u}}
$$

2. If

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c,
$$

then $\operatorname{dim}\left(\overrightarrow{\boldsymbol{v}}_{\max }\right)=N \nearrow \infty$. We therefore consider the projection

$$
\overrightarrow{\boldsymbol{v}}_{\max } \overrightarrow{\boldsymbol{v}}_{\max }^{*}
$$

on $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ of a generic deterministic vector $\overrightarrow{\boldsymbol{a}}_{N}$

The eigenvector associated to $\lambda_{\max }$ II

Preliminary observations

1. Let N finite, $n \rightarrow \infty$, then

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}=\boldsymbol{\Pi}^{1 / 2}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \boldsymbol{\Pi}^{1 / 2} \underset{n \rightarrow \infty}{ } \boldsymbol{\Pi}
$$

As a consequence:

$$
\overrightarrow{\boldsymbol{v}}_{\max } \xrightarrow[n \rightarrow \infty]{ } \overrightarrow{\mathbf{u}}
$$

2. If

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c,
$$

then $\operatorname{dim}\left(\overrightarrow{\boldsymbol{v}}_{\max }\right)=N \nearrow \infty$. We therefore consider the projection

$$
\overrightarrow{\boldsymbol{v}}_{\max } \overrightarrow{\boldsymbol{v}}_{\max }^{*}
$$

on $\overrightarrow{\boldsymbol{v}}_{\text {max }}$ of a generic deterministic vector $\overrightarrow{\boldsymbol{a}}_{N}$, i.e.

$$
\overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\boldsymbol{v}}_{\text {max }} \overrightarrow{\boldsymbol{v}}_{\text {max }}^{*} \overrightarrow{\boldsymbol{a}}_{N}
$$

The eigenvector associated to $\lambda_{\max }$ III

Theorem

Assume that $\theta>\sqrt{c}$ and let $\overrightarrow{\boldsymbol{a}}_{N}$ be a deterministic vector with norm 1, then

$$
\overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\boldsymbol{v}}_{\max } \overrightarrow{\boldsymbol{v}}_{\max }^{*} \overrightarrow{\boldsymbol{a}}_{N}-\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1} \overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*} \overrightarrow{\boldsymbol{a}}_{N} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} 0
$$

The eigenvector associated to $\lambda_{\max }$ III

Theorem

Assume that $\theta>\sqrt{c}$ and let \boldsymbol{a}_{N} be a deterministic vector with norm 1, then

$$
\overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\boldsymbol{v}}_{\max } \overrightarrow{\boldsymbol{v}}_{\max }^{*} \overrightarrow{\boldsymbol{a}}_{N}-\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1} \overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*} \overrightarrow{\boldsymbol{a}}_{N} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} 0
$$

Remarks

- The large dimension $\frac{N}{n} \rightarrow c$ induces a correction factor:

$$
\kappa(c)=\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1}
$$

The eigenvector associated to $\lambda_{\max }$ III

Theorem

Assume that $\theta>\sqrt{c}$ and let \boldsymbol{a}_{N} be a deterministic vector with norm 1, then

$$
\overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\boldsymbol{v}}_{\max } \overrightarrow{\boldsymbol{v}}_{\max }^{*} \overrightarrow{\boldsymbol{a}}_{N}-\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1} \overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*} \overrightarrow{\boldsymbol{a}}_{N} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} 0
$$

Remarks

- The large dimension $\frac{N}{n} \rightarrow c$ induces a correction factor:

$$
\kappa(c)=\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1}
$$

- Of course $\kappa(c) \rightarrow 1$ if $c \rightarrow 0$.

The eigenvector associated to $\lambda_{\max }$ III

Theorem

Assume that $\theta>\sqrt{c}$ and let $\overrightarrow{\boldsymbol{a}}_{N}$ be a deterministic vector with norm 1, then

$$
\overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\boldsymbol{v}}_{\max } \overrightarrow{\boldsymbol{v}}_{\max }^{*} \overrightarrow{\boldsymbol{a}}_{N}-\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1} \overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*} \overrightarrow{\boldsymbol{a}}_{N} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} 0
$$

Remarks

- The large dimension $\frac{N}{n} \rightarrow c$ induces a correction factor:

$$
\kappa(c)=\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1}
$$

- Of course $\kappa(c) \rightarrow 1$ if $c \rightarrow 0$.
- we recover the fact that if N is finite, $n \rightarrow \infty$ (small data, large samples), then

$$
\overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\boldsymbol{v}}_{\max } \overrightarrow{\boldsymbol{v}}_{\max }^{*} \overrightarrow{\boldsymbol{a}}_{N}-\overrightarrow{\boldsymbol{a}}_{N}^{*} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*} \overrightarrow{\boldsymbol{a}}_{N} \xrightarrow[N, n \rightarrow \infty]{a . s .} 0 .
$$

Introduction

Large covariance matrices

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
The eigenvector associated to $\lambda_{\max }$
Spiked models: Summary

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Summary

Summary

Spiked model
Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity $\left[\mathrm{Example}: \boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathrm{u}}^{*}\right]$

Summary

Spiked model
Let

- Π_{N} a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries

Summary

Spiked model

Let

- Π_{N} a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Summary

Spiked model

Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model
Global regime
The spectral measure $L_{N}\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

Summary

Spiked model

Let
$-\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]

- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model
Global regime
The spectral measure $L_{N}\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:
Largest eigenvalue (rank one perturbation)
- if $\theta \leq \sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ converges to the right edge of the bulk.

Summary

Spiked model

Let
$-\Pi_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]

- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_{N}\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

Largest eigenvalue (rank one perturbation)

- if $\theta \leq \sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ converges to the right edge of the bulk.
- if $\theta>\sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ separates from the bulk.

Summary

Spiked model

Let
$-\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]

- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\mathbf{Y}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_{N}\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

Largest eigenvalue (rank one perturbation)

- if $\theta \leq \sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ converges to the right edge of the bulk.
- if $\theta>\sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}\right)$ separates from the bulk.

Associated eigenvector

- In the large dimension setting, $\overrightarrow{\mathbf{v}}_{\max } \approx\left(1-\frac{c}{\theta^{2}}\right)\left(1+\frac{c}{\theta}\right)^{-1} \overrightarrow{\mathbf{u}}$

Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection
The setup
Asymptotic behaviour of the GLRT
Fluctuations of the test statistics
Power of the test
The GLRT: Summary

Direction of Arrival Estimation

Conclusion

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\boldsymbol{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process (σ unknown):

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process (σ unknown):

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathbf{h}}$ is a $N \times 1$ deterministic and unknown vector and typically represents the propagation channel

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process (σ unknown):

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathbf{h}}$ is a $N \times 1$ deterministic and unknown vector and typically represents the propagation channel
- $s(k)$ represent the signal; it is a scalar complex gaussian i.i.d. process

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process (σ unknown):

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathbf{h}}$ is a $N \times 1$ deterministic and unknown vector and typically represents the propagation channel
- $s(k)$ represent the signal; it is a scalar complex gaussian i.i.d. process

Objective

Given n observations $(\overrightarrow{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$
\hat{\mathbf{R}}_{n}=\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*} \quad \text { where } \quad \mathbf{Y}_{n}=[\overrightarrow{\mathbf{y}}(1), \cdots, \overrightarrow{\mathbf{y}}(n)] \quad \text { is } N \times n,
$$

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process (σ unknown):

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathbf{h}}$ is a $N \times 1$ deterministic and unknown vector and typically represents the propagation channel
- $s(k)$ represent the signal; it is a scalar complex gaussian i.i.d. process

Objective

Given n observations $(\overrightarrow{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$
\hat{\mathbf{R}}_{n}=\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*} \quad \text { where } \quad \mathbf{Y}_{n}=[\overrightarrow{\mathbf{y}}(1), \cdots, \overrightarrow{\mathbf{y}}(n)] \quad \text { is } N \times n,
$$

the aim is to decide H_{0} (no signal) or H_{1} (single-source detection) in the case where

$$
\frac{N}{n} \rightarrow c \in(0,1) \quad \text { i.e. }
$$

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process (σ unknown):

$$
\overrightarrow{\mathbf{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathbf{h}}$ is a $N \times 1$ deterministic and unknown vector and typically represents the propagation channel
- $s(k)$ represent the signal; it is a scalar complex gaussian i.i.d. process

Objective

Given n observations $(\overrightarrow{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$
\hat{\mathbf{R}}_{n}=\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*} \quad \text { where } \quad \mathbf{Y}_{n}=[\overrightarrow{\mathbf{y}}(1), \cdots, \overrightarrow{\mathbf{y}}(n)] \quad \text { is } N \times n,
$$

the aim is to decide H_{0} (no signal) or H_{1} (single-source detection) in the case where

$$
\frac{N}{n} \rightarrow c \in(0,1) \quad \text { i.e. } \quad \text { Dimension } N \text { of observations } \propto \text { size } n \text { of sample }
$$

The GLRT

Since σ^{2} and $\overrightarrow{\mathbf{h}}$ are unknown, we cannot use the likelihood ratio test (which would have been optimal by Neyman-Pearson).

The GLRT

Since σ^{2} and $\overrightarrow{\mathbf{h}}$ are unknown, we cannot use the likelihood ratio test (which would have been optimal by Neyman-Pearson).

The Generalized Likelihood Ratio Test

In the case where $\overrightarrow{\mathbf{h}}$ and σ^{2} are unknown, we use instead:

$$
L_{n}=\frac{\sup _{\sigma^{2}, \overrightarrow{\mathbf{h}}} p_{1}\left(\mathbf{Y}_{n}, \sigma^{2}, \overrightarrow{\mathbf{h}}\right)}{\sup _{\sigma^{2}} p_{0}\left(\mathbf{Y}_{n}, \sigma^{2}\right)}
$$

which is no longer uniformily most powerful.

The GLRT

Since σ^{2} and $\overrightarrow{\mathbf{h}}$ are unknown, we cannot use the likelihood ratio test (which would have been optimal by Neyman-Pearson).

The Generalized Likelihood Ratio Test

In the case where $\overrightarrow{\mathbf{h}}$ and σ^{2} are unknown, we use instead:

$$
L_{n}=\frac{\sup _{\sigma^{2}, \overrightarrow{\mathbf{h}}} p_{1}\left(\mathbf{Y}_{n}, \sigma^{2}, \overrightarrow{\mathbf{h}}\right)}{\sup _{\sigma^{2}} p_{0}\left(\mathbf{Y}_{n}, \sigma^{2}\right)}
$$

which is no longer uniformily most powerful.

Expression of the GLRT

The GLRT statistics writes

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_{n}}
$$

Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection
The setup
Asymptotic behaviour of the GLRT
Fluctuations of the test statistics
Power of the test
The GLRT: Summary

Direction of Arrival Estimation

Conclusion

The test statistics T_{n}

Denote by $\widetilde{\mathbf{X}}_{N}$ a matrix with i.i.d. $0 / 1$ entries and let

$$
\boldsymbol{\Pi}_{N}=\left(\mathbf{I}_{N}+\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right) \quad \text { where } \quad \overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{h}}}{\|\overrightarrow{\mathbf{h}}\|}
$$

The test statistics T_{n}

Denote by $\widetilde{\mathbf{X}}_{N}$ a matrix with i.i.d. $0 / 1$ entries and let

$$
\boldsymbol{\Pi}_{N}=\left(\mathbf{I}_{N}+\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right) \quad \text { where } \quad \overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{h}}}{\|\overrightarrow{\mathbf{h}}\|}
$$

After some massaging, it turns out that

The test statistics T_{n}

Denote by $\widetilde{\mathbf{X}}_{N}$ a matrix with i.i.d. $0 / 1$ entries and let

$$
\boldsymbol{\Pi}_{N}=\left(\mathbf{I}_{N}+\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right) \quad \text { where } \quad \overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{h}}}{\|\overrightarrow{\mathbf{h}}\|}
$$

After some massaging, it turns out that

- Under H_{0},

$$
T_{n}=\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)
$$

T_{N} is simply the largest eigenvalue of a Wishart matrix

The test statistics T_{n}

Denote by $\widetilde{\mathbf{X}}_{N}$ a matrix with i.i.d. $0 / 1$ entries and let

$$
\boldsymbol{\Pi}_{N}=\left(\mathbf{I}_{N}+\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right) \quad \text { where } \quad \overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{h}}}{\|\overrightarrow{\mathbf{h}}\|}
$$

After some massaging, it turns out that

- Under H_{0},

$$
T_{n}=\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)
$$

T_{N} is simply the largest eigenvalue of a Wishart matrix

- Under H_{1},

$$
T_{n}=\lambda_{\max }\left(\frac{1}{n} \boldsymbol{\Pi}_{N}^{1 / 2} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*} \boldsymbol{\Pi}_{N}^{1 / 2}\right)
$$

T_{N} is the largest eigenvalue of a rank-one perturbated Wishart matrix

The test statistics T_{n}

Denote by $\widetilde{\mathbf{X}}_{N}$ a matrix with i.i.d. $0 / 1$ entries and let

$$
\boldsymbol{\Pi}_{N}=\left(\mathbf{I}_{N}+\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right) \quad \text { where } \quad \overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{h}}}{\|\overrightarrow{\mathbf{h}}\|}
$$

After some massaging, it turns out that

- Under H_{0},

$$
T_{n}=\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)
$$

T_{N} is simply the largest eigenvalue of a Wishart matrix

- Under H_{1},

$$
T_{n}=\lambda_{\max }\left(\frac{1}{n} \boldsymbol{\Pi}_{N}^{1 / 2} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*} \boldsymbol{\Pi}_{N}^{1 / 2}\right)
$$

T_{N} is the largest eigenvalue of a rank-one perturbated Wishart matrix

The good news is that in both case, we can describe the limit.

Limits of the test statistics T_{n}

Limits of the test statistics T_{n}

Under H_{0}

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

Limits of the test statistics T_{n}

Under H_{0}

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\sqrt{c})^{2}
$$

Under H_{1}
Denote by

$$
\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

Limits of the test statistics T_{n}

Under H_{0}

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

Under H_{1}
Denote by

$$
\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

- if snr $>\sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\mathbf{s n r})\left(1+\frac{c}{\mathbf{s n r}}\right)
$$

Limits of the test statistics T_{n}

Under H_{0}

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

Under H_{1}
Denote by

$$
\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

- if snr $>\sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\mathbf{s n r})\left(1+\frac{c}{\mathbf{s n r}}\right)>(1+\sqrt{c})^{2}
$$

Limits of the test statistics T_{n}

Under H_{0}

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

Under H_{1}
Denote by

$$
\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

- if $\mathbf{s n r}>\sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\mathbf{s n r})\left(1+\frac{c}{\mathbf{s n r}}\right)>(1+\sqrt{c})^{2}
$$

- if $\mathbf{s n r} \leq \sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\sqrt{c})^{2}
$$

Limit of the test statistics T_{n} III

Remarks

- If $\mathbf{s n r} \leq \sqrt{c}$ then the test statistics does not discriminate between the two hypotheses.

Limit of the test statistics T_{n} III

Remarks

- If $\mathbf{s n r} \leq \sqrt{c}$ then the test statistics does not discriminate between the two hypotheses.
- Condition $\overline{\text { snr }>\sqrt{c}}$ is automatically fulfilled in the standard regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0
$$

Limit of the test statistics T_{n} III

Remarks

- If $\mathrm{snr} \leq \sqrt{c}$ then the test statistics does not discriminate between the two hypotheses.
-Condition $\mathrm{snr}>\sqrt{c}$ is automatically fulfilled in the standard regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0
$$

- One can interpret \sqrt{c} as a level of the asymptotic noise induced by the data dimension (=asymptotic data noise).

Limit of the test statistics T_{n} III

Remarks

- If $\mathrm{snr} \leq \sqrt{c}$ then the test statistics does not discriminate between the two hypotheses.
- Condition $\mathbf{s n r}>\sqrt{c}$ is automatically fulfilled in the standard regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0
$$

- One can interpret \sqrt{c} as a level of the asymptotic noise induced by the data dimension (=asymptotic data noise).

Hence the rule of thumb
Detection occurs if snr higher than asymptotic data noise.

Simulations

$\mathrm{N}=50, \mathrm{n}=2000$, sqrt(c)=0.158113883008419

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
N=100, n=2000, \text { sqrt(c) }=0.223606797749979
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
N=200, n=2000, \operatorname{sqrt}(c)=0.316227766016838
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
\mathrm{N}=500, \mathrm{n}=2000, \text { sqrt(c) }=0.5
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
N=1000, n=2000, \text { sqrt(c) }=0.707106781186548
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection
The setup
Asymptotic behaviour of the GLRT
Fluctuations of the test statistics
Power of the test
The GLRT: Summary

Direction of Arrival Estimation

Conclusion

Threshold of the test I

- The exact distribution of the statistics L_{n} is needed to set the threshold of the test for a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

Threshold of the test I

- The exact distribution of the statistics L_{n} is needed to set the threshold of the test for a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

Threshold of the test I

- The exact distribution of the statistics L_{n} is needed to set the threshold of the test for a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

- We rather study the asymptotic fluctuations of L_{n} under the regime

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c \in(0,1)
$$

Threshold of the test I

- The exact distribution of the statistics L_{n} is needed to set the threshold of the test for a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

- We rather study the asymptotic fluctuations of L_{n} under the regime

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c \in(0,1)
$$

- Recall that L_{N} is the largest eigenvalue of a Whishat matrix $\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}$.

Threshold of the test I

- The exact distribution of the statistics L_{n} is needed to set the threshold of the test for a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

- We rather study the asymptotic fluctuations of L_{n} under the regime

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c \in(0,1)
$$

- Recall that L_{N} is the largest eigenvalue of a Whishat matrix $\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}$.
- We need to understand the fluctuations of $\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ under H_{0},

Threshold of the test II

Fluctuations of $\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$

Threshold of the test II

Fluctuations of $\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$
Theorem (Tracy-Widom)

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

Threshold of the test II

Fluctuations of $\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$
Theorem (Tracy-Widom)

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Threshold of the test II

Fluctuations of $\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$
Theorem (Tracy-Widom)

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \underset{N, n \rightarrow \infty}{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Otherwise stated,

$$
\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)=\left(1+\sqrt{c_{n}}\right)^{2}+\frac{\Theta_{N}}{N^{2 / 3}} \boldsymbol{X}_{T W}+\varepsilon_{n}
$$

where $\boldsymbol{X}_{T W}$ is a random variable with Tracy-Widom distribution.

Threshold of the test II

Fluctuations of $\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$
Theorem (Tracy-Widom)

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Otherwise stated,

$$
\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)=\left(1+\sqrt{c_{n}}\right)^{2}+\frac{\Theta_{N}}{N^{2 / 3}} \boldsymbol{X}_{T W}+\varepsilon_{n}
$$

where $\boldsymbol{X}_{T W}$ is a random variable with Tracy-Widom distribution.

- Definition of Tracy-Widom distribution complicated ..

Threshold of the test II

Fluctuations of $\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$
Theorem (Tracy-Widom)

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\frac{1}{n} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Otherwise stated,

$$
\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)=\left(1+\sqrt{c_{n}}\right)^{2}+\frac{\Theta_{N}}{N^{2 / 3}} \boldsymbol{X}_{T W}+\varepsilon_{n}
$$

where $\boldsymbol{X}_{T W}$ is a random variable with Tracy-Widom distribution.

- Definition of Tracy-Widom distribution complicated ..

Don't bother .. just download it

- For simulations, cf. R Package 'RMTstat', by Johnstone et al.

Tracy-Widom curve

Marchenko-Pastur and Tracy-Widom Distributions

Figure: Fluctuations of the largest eigenvalue $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$ under H_{0}

Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection
The setup
Asymptotic behaviour of the GLRT
Fluctuations of the test statistics
Power of the test
The GLRT: Summary

Direction of Arrival Estimation

Conclusion

Power of the GLRT I

No optimality

Contrary to Neyman-Pearson procedure, there is no theoretical guarantee that the GLRT is a uniformily most powerful test.

- It is therefore important to be able to compute the power of the GLRT

Power of the GLRT I

No optimality

Contrary to Neyman-Pearson procedure, there is no theoretical guarantee that the GLRT is a uniformily most powerful test.

- It is therefore important to be able to compute the power of the GLRT

Large deviations

- Using large deviation techniques, one can compute the error exponent \mathcal{E} as:

$$
\mathcal{E}=\lim _{N, n \rightarrow \infty}-\frac{1}{n} \log \mathbb{P}_{H_{1}}\left(L_{N}<\boldsymbol{t}_{\boldsymbol{\alpha}}^{\boldsymbol{n}}\right) .
$$

Power of the GLRT I

No optimality

Contrary to Neyman-Pearson procedure, there is no theoretical guarantee that the GLRT is a uniformily most powerful test.

- It is therefore important to be able to compute the power of the GLRT

Large deviations

- Using large deviation techniques, one can compute the error exponent \mathcal{E} as:

$$
\mathcal{E}=\lim _{N, n \rightarrow \infty}-\frac{1}{n} \log \mathbb{P}_{H_{1}}\left(L_{N}<\boldsymbol{t}_{\boldsymbol{\alpha}}^{\boldsymbol{n}}\right)
$$

- Hence, the type II error writes:

$$
\mathbb{P}_{H_{1}}\left(L_{N}<t(\alpha)\right) \approx_{N, n \rightarrow \infty} e^{-n \boldsymbol{\mathcal { E }}}
$$

Spiked models

Statistical Test for Single-Source Detection
The setup
Asymptotic behaviour of the GLRT
Fluctuations of the test statistics
Power of the test
The GLRT: Summary

Direction of Arrival Estimation

Conclusion

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_{n}}
$$

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_{n}}
$$

- The test statistics T_{n} discriminates between H_{0} and H_{1} if $\operatorname{snr}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}>\sqrt{c}$

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_{n}}
$$

- The test statistics T_{n} discriminates between H_{0} and H_{1} if $\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}>\sqrt{c}$
- The threshold can be asymptotically determined by Tracy-Widom quantiles.
- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{Trace} \hat{\mathbf{R}}_{n}}
$$

- The test statistics T_{n} discriminates between H_{0} and H_{1} if $\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}>\sqrt{c}$
- The threshold can be asymptotically determined by Tracy-Widom quantiles.
- The type II error (equivalentlty power of the test) can be analyzed via the error exponent of the test

$$
\mathcal{E}=\lim _{N, n \rightarrow \infty}-\frac{1}{n} \log \mathbb{P}_{H_{1}}\left(L_{N}<\boldsymbol{t}_{\boldsymbol{\alpha}}\right)
$$

which relies on the study of large deviations of $\lambda_{\max }$ under H_{1}.

Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation
Position of the problem
MUSIC Algorithm

Conclusion

Estimation problem

The aim of the problem is:

Estimation problem

The aim of the problem is:

- given n observations $\overrightarrow{\boldsymbol{y}}_{1}, \cdots, \overrightarrow{\boldsymbol{y}}_{n}$ each of dimension N with

$$
\overrightarrow{\boldsymbol{y}}=\overrightarrow{\boldsymbol{y}}\left(\boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{r}\right)
$$

Estimation problem

The aim of the problem is:

- given n observations $\overrightarrow{\boldsymbol{y}}_{1}, \cdots, \overrightarrow{\boldsymbol{y}}_{n}$ each of dimension N with

$$
\overrightarrow{\boldsymbol{y}}=\overrightarrow{\boldsymbol{y}}\left(\boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{r}\right)
$$

- to estimate \boldsymbol{r} scalar parameters $\boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{r}$

Otherwise stated, the goal is to produce the following estimators:

$$
\left[\overrightarrow{\boldsymbol{y}}_{1}, \cdots, \overrightarrow{\boldsymbol{y}}_{n}\right] \longrightarrow \text { estimation } \longrightarrow\left(\hat{\boldsymbol{\varphi}}_{1}, \cdots, \hat{\boldsymbol{\varphi}}_{r}\right)
$$

Estimation problem

The aim of the problem is:

- given n observations $\overrightarrow{\boldsymbol{y}}_{1}, \cdots, \overrightarrow{\boldsymbol{y}}_{n}$ each of dimension N with

$$
\overrightarrow{\boldsymbol{y}}=\overrightarrow{\boldsymbol{y}}\left(\boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{r}\right)
$$

- to estimate \boldsymbol{r} scalar parameters $\boldsymbol{\varphi}_{1}, \cdots, \boldsymbol{\varphi}_{r}$

Otherwise stated, the goal is to produce the following estimators:

$$
\left[\overrightarrow{\boldsymbol{y}}_{1}, \cdots, \overrightarrow{\boldsymbol{y}}_{n}\right] \longrightarrow \text { estimation } \longrightarrow\left(\hat{\boldsymbol{\varphi}}_{1}, \cdots, \hat{\boldsymbol{\varphi}}_{r}\right)
$$

Regime of interest

- N, n of the same order and large. Formally: $N, n \rightarrow \infty$ and $\frac{N}{n} \rightarrow c \in(0, \infty)$
- r finite

Source localization

Problem

r radio sources send their signal to a uniform array of N antennas during n signal snapshots.

$$
\text { Problem: estimate arrival angles } \varphi_{1}, \cdots, \boldsymbol{\varphi}_{r}
$$

Figure: Two sources φ_{1} and φ_{2} to be estimated

Signal model

The generic observation writes

$$
\overrightarrow{\boldsymbol{y}}=\sum_{\ell=1}^{\boldsymbol{r}} \overrightarrow{\boldsymbol{a}}\left(\boldsymbol{\varphi}_{\ell}\right) s_{\ell}+\sigma \overrightarrow{\boldsymbol{w}} \quad \text { with } \quad \overrightarrow{\boldsymbol{a}}(\boldsymbol{\varphi})=\frac{1}{\sqrt{N}}\left(\begin{array}{c}
e^{i \boldsymbol{\varphi}} \\
\vdots \\
e^{i(N-1) \boldsymbol{\varphi}}
\end{array}\right) \quad \text { and } \overrightarrow{\boldsymbol{w}} \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

where

- s_{ℓ} is the scalar source signal associated to DoA φ_{ℓ}
- $\overrightarrow{\boldsymbol{w}}$ is the white noise with variance σ^{2}

In matrix form

$$
\mathbf{Y}_{N}=\mathbf{A}_{N}(\overrightarrow{\boldsymbol{\varphi}}) \mathbf{S}_{N}+\sigma \mathbf{W}_{N}
$$

with
$\Rightarrow \mathbf{A}_{N}(\overrightarrow{\boldsymbol{\varphi}})=\left[\overrightarrow{\boldsymbol{a}}\left(\boldsymbol{\varphi}_{1}\right), \cdots, \overrightarrow{\boldsymbol{a}}\left(\boldsymbol{\varphi}_{\boldsymbol{r}}\right)\right]$ deterministic of size $N \times \boldsymbol{r}$

- \mathbf{W}_{N} random with i.i.d. entries of size $N \times n$
$-\mathbf{S}_{N}$ of size $\boldsymbol{r} \times n$ either deterministic or random

Signal model

The generic observation writes

$$
\overrightarrow{\boldsymbol{y}}=\sum_{\ell=1}^{\boldsymbol{r}} \overrightarrow{\boldsymbol{a}}\left(\boldsymbol{\varphi}_{\ell}\right) s_{\ell}+\sigma \overrightarrow{\boldsymbol{w}} \quad \text { with } \quad \overrightarrow{\boldsymbol{a}}(\boldsymbol{\varphi})=\frac{1}{\sqrt{N}}\left(\begin{array}{c}
1 \\
e^{i \boldsymbol{\varphi}} \\
\vdots \\
e^{i(N-1) \boldsymbol{\varphi}}
\end{array}\right) \quad \text { and } \overrightarrow{\boldsymbol{w}} \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

where

- s_{ℓ} is the scalar source signal associated to DoA φ_{ℓ}
- $\overrightarrow{\boldsymbol{w}}$ is the white noise with variance σ^{2}

In matrix form

$$
\mathbf{Y}_{N}=\mathbf{A}_{N}(\overrightarrow{\boldsymbol{\varphi}}) \mathbf{S}_{N}+\sigma \mathbf{W}_{N}
$$

with
$\Rightarrow \mathbf{A}_{N}(\overrightarrow{\boldsymbol{\varphi}})=\left[\overrightarrow{\boldsymbol{a}}\left(\boldsymbol{\varphi}_{1}\right), \cdots, \overrightarrow{\boldsymbol{a}}\left(\boldsymbol{\varphi}_{\boldsymbol{r}}\right)\right]$ deterministic of size $N \times \boldsymbol{r}$

- \mathbf{W}_{N} random with i.i.d. entries of size $N \times n$
$-\mathbf{S}_{N}$ of size $\boldsymbol{r} \times n$ either deterministic or random
In a nutshell

$$
\mathbf{Y}_{N} \text { is a (multiplicative) spiked model with a perturbation of rank } r \text {. }
$$

Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation
Position of the problem
MUSIC Algorithm

Conclusion

Source localization with subspace estimation

Method known as MUSIC for $\{\mathbf{M U}\}$ ltiple $\{\mathbf{S I}\}$ gnal $\{\mathbf{C}\}$ lassification (Schmidt '86)

Source localization with subspace estimation

Method known as MUSIC for $\{\mathbf{M U}\}$ ltiple $\{\mathbf{S I}\}$ gnal $\{\mathbf{C}\}$ lassification (Schmidt '86)
Subspace estimation

- The estimation of the angles $\varphi_{1}, \cdots, \varphi_{r}$ relies on the estimation of the orthogonal projection $\boldsymbol{\Pi}_{N}$ of the eigenspace of the r largest eigenvalues of

$$
\frac{1}{n} \mathbb{E} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}
$$

Source localization with subspace estimation

Method known as MUSIC for $\{\mathbf{M U}\}$ ltiple $\{\mathbf{S I}\}$ gnal $\{\mathbf{C}\}$ lassification (Schmidt '86)
Subspace estimation

- The estimation of the angles $\varphi_{1}, \cdots, \varphi_{r}$ relies on the estimation of the orthogonal projection $\boldsymbol{\Pi}_{N}$ of the eigenspace of the r largest eigenvalues of

$$
\frac{1}{n} \mathbb{E} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}
$$

Small data, large samples: standard estimator

Consider $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$, the empirical counterpart of $\frac{1}{n} \mathbb{E} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ and its r eigenvectors

$$
\left(\vec{u}_{i}, \cdots, \vec{u}_{r}\right)
$$

associated to its \boldsymbol{r} largest (empirical) eigenvalues.

Source localization with subspace estimation

Method known as MUSIC for $\{\mathbf{M U}\}$ ltiple $\{\mathbf{S I}\}$ gnal $\{\mathbf{C}\}$ lassification (Schmidt '86)

Subspace estimation

- The estimation of the angles $\varphi_{1}, \cdots, \varphi_{r}$ relies on the estimation of the orthogonal projection $\boldsymbol{\Pi}_{N}$ of the eigenspace of the r largest eigenvalues of

$$
\frac{1}{n} \mathbb{E} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}
$$

Small data, large samples: standard estimator

Consider $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$, the empirical counterpart of $\frac{1}{n} \mathbb{E} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ and its r eigenvectors

$$
\left(\vec{u}_{\boldsymbol{i}}, \cdots, \vec{u}_{r}\right)
$$

associated to its r largest (empirical) eigenvalues.

- Then the orthogonal projector associated to the r largest eigenvalues of $\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}$ is

$$
\widehat{\boldsymbol{\Pi}}_{N}=\sum_{\ell=1}^{r} \overrightarrow{\boldsymbol{u}}_{\ell} \overrightarrow{\boldsymbol{u}}_{\ell}^{*}
$$

The large dimension

If N, n of the same order

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*} \text { no longer a good estimator of } \frac{1}{n} \mathbb{E} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}
$$

The large dimension

If N, n of the same order

$$
\frac{1}{n} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*} \text { no longer a good estimator of } \frac{1}{n} \mathbb{E} \mathbf{Y}_{N} \mathbf{Y}_{N}^{*}
$$

Large data, large sample

- The consistent estimator or $\boldsymbol{\Pi}_{N}$ is given by

$$
\hat{\mathbf{\Pi}}_{N}=\sum_{k=1}^{r}\left(1+\frac{c}{\hat{\theta}_{k}}\right)\left(1-\frac{c}{\hat{\theta}_{k}^{2}}\right)^{-1} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

where the $\hat{\theta}_{k}$'s are the estimated perturbations associated to the k th largest eigenvalue.

- notice the correction terms with respect to the standard estimator.

Simulation results I (courtesy from Romain Couillet)

Figure : MUSIC against G-MUSIC for DoA detection of $K=3$ signal sources, $N=20$ sensors, $M=150$ samples, SNR of 10 dB . Angles of arrival of $10^{\circ}, 35^{\circ}$, and 37°.

Simulation results II

Figure : MUSIC against G-MUSIC for DoA detection of $K=3$ signal sources, $N=20$ sensors, $M=150$ samples, SNR of 10 dB . Angles of arrival of $10^{\circ}, 35^{\circ}$, and 37°.

Introduction

Large covariance matrices

Spiked models

Statistical Test for Single-Source Detection

Direction of Arrival Estimation

Conclusion

Conclusion

Large random matrix theory provides a number of methods which might be of interest for the statistician in particular if one has to handle large data sets.

References

- W. Hachem, P. Loubaton, X. Mestre, J. Najim and P. Vallet.
" A subspace estimator for fixed rank perturbations of large random matrices", Journal of Multivariate Analysis, pp. 427-447, Vol. 114, Feb. 2013.
- P. Bianchi, M. Debbah, M. Maïda and J. Najim.
"Performance of Statistical Tests for Single Source Detection using Random Matrix Theory"
IEEE Trans. Inf. Theory, Vol. 57 (4), april 2011 , 2400-2419.

