# Big Data Big Bias Small Surprise! 

S. Ejaz Ahmed

Faculty of Math and Science<br>Brock University, ON, Canada

sahmed5@brocku.ca
www.brocku.ca/sahmed

HDDA-IV 2014 August 24-28, 2014 Joint Work with X. Gao

## Outline of Presentation

## Proposed Estimation Strategies

## Asymptotic and Simulation Study

## Applications

## Envoi

## Outline of Presentation

## Proposed Estimation Strategies

## Asymptotic and Simulation Study

## Applications

Envoi

## Outline of Presentation

## Proposed Estimation Strategies

## Asymptotic and Simulation Study

## Applications

Envoi

## Outline of Presentation

## Proposed Estimation Strategies

## Asymptotic and Simulation Study

## Applications

Envoi

## Outline of Presentation

## Proposed Estimation Strategies

## Asymptotic and Simulation Study

## Applications

## Outline of Presentation

## Proposed Estimation Strategies

## Asymptotic and Simulation Study

## Applications

## Envoi

## Classical Linear Model

Consider a classical linear model with observed response variable $y_{i}$ and covariates $\mathbf{x}_{i}=\left(x_{i 1}, \cdots, x_{i p_{n}}\right)^{\prime}$ as follows,

$$
y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}+\epsilon_{i}, \quad 1 \leq i \leq n,
$$

where $\boldsymbol{\beta}_{n}=\left(\beta_{1}, \cdots, \beta_{p_{n}}\right)^{\prime}$ is a $p_{n}$-dimensional vector of the unknown parameters, and $\epsilon_{i}$ 's are independent and identically distributed with center 0 and variance $\sigma^{2}$.

Subscript $n$ in $p_{n}$ indicates that the number of coefficients may increase with the sample size $n$.

## Model Selection \& Estimation Problem

## Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

## Too Many Nuisance Regression Parameters

## Candidate Full Model is Sparse

## Candidate Subspace - Candidate Submodel

## Model Selection \& Estimation Problem

## Candidate Full Model Estimation

## A Great Deal of Redundancy in the Candidate Full Model

## Too Many Nuisance Regression Parameters

## Candidate Full Model is Sparse

## Candidate Subspace - Candidate Submodel

## Model Selection \& Estimation Problem

## Candidate Full Model Estimation

## A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Subspace - Candidate Submodel

## Model Selection \& Estimation Problem

## Candidate Full Model Estimation

## A Great Deal of Redundancy in the Candidate Full Model

## Too Many Nuisance Regression Parameters

## Candidate Full Model is Sparse

Candidate Subspace - Candidate Submodel

## Model Selection \& Estimation Problem

## Candidate Full Model Estimation

## A Great Deal of Redundancy in the Candidate Full Model

## Too Many Nuisance Regression Parameters

## Candidate Full Model is Sparse

Candidate Subspace - Candidate Submodel

## Model Selection \& Estimation Problem

## Candidate Full Model Estimation

## A Great Deal of Redundancy in the Candidate Full Model

## Too Many Nuisance Regression Parameters

## Candidate Full Model is Sparse

Candidate Subspace - Candidate Submodel

## Model Selection \& Estimation Problem

## Candidate Full Model Estimation

## A Great Deal of Redundancy in the Candidate Full Model

## Too Many Nuisance Regression Parameters

## Candidate Full Model is Sparse

Candidate Subspace - Candidate Submodel

## Model Selection \& Estimation Problem

> We want to estimate $\beta$ when it is plausible that $\beta$ lie in the subspace

$$
\mathbf{H} \beta=\mathbf{h}
$$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eve: Auxiliary Information (AE)

$$
\text { UPI or } A I: \mathbf{H} \beta=\mathbf{h}
$$

## In many applications it is assumed that model is sparse, i.e. $\beta=\left(\beta_{1}^{\prime}, \beta_{0}^{\prime}\right)^{\prime}, \quad \beta_{2}=0$.

## Model Selection \& Estimation Problem

We want to estimate $\boldsymbol{\beta}$ when it is plausible that $\boldsymbol{\beta}$ lie in the subspace

$$
\mathbf{H} \boldsymbol{\beta}=\mathbf{h}
$$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

UPI or $A I: \mathbf{H} \beta=\mathbf{h}$

## In many applications it is assumed that model is sparse, i.e.

## Model Selection \& Estimation Problem

We want to estimate $\beta$ when it is plausible that $\beta$ lie in the subspace

$$
\mathbf{H} \boldsymbol{\beta}=\mathbf{h}
$$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

UPI or $A I: \mathbf{H} \beta=\mathbf{h}$


## Model Selection \& Estimation Problem

We want to estimate $\beta$ when it is plausible that $\boldsymbol{\beta}$ lie in the subspace

$$
\mathbf{H} \boldsymbol{\beta}=\mathbf{h}
$$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

UPI or $A I: \mathbf{H} \beta=\mathbf{h}$


## Model Selection \& Estimation Problem

We want to estimate $\beta$ when it is plausible that $\beta$ lie in the subspace

$$
\mathbf{H} \boldsymbol{\beta}=\mathbf{h}
$$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

$$
\text { UPI or } A I: \mathbf{H} \boldsymbol{\beta}=\mathbf{h}
$$

In many applications it is assumed that model is sparse, i.e.
$\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\beta}_{2}^{\prime}\right)^{\prime}, \quad \boldsymbol{\beta}_{2}=\mathbf{0}$.

## Candidate Full Model Estimation

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

A Revealing Tale of Overfitted Model

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.


## Candidate Full Model Estimation

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

A Revealing Tate of Overfitted Model

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.


## Candidate Full Model Estimation

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

A Revealing Tale of Overfitted Model

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.


## Candidate Full Model Estimation

- Maximum Likelihood
- Least Square
- Ridge regression Or any other


## A Revealing Tale of Overfitted Model

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.


## Candidate Full Model Estimation

- Maximum Likelihood
- Least Square
- Ridge regression Or any other


## A Revealing Tale of Overfitted Model

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.


## Candidate Full Model Estimation

- Maximum Likelihood
- Least Square
- Ridge regression Or any other


## A Revealing Tale of Overfitted Model

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.


## Candidate Submodel Estimation

$$
\hat{\boldsymbol{\beta}}^{S M}=\hat{\boldsymbol{\beta}}^{F M}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{H}^{\prime}\left(\mathbf{H}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{H}^{\prime}\right)^{-1}\left(\mathbf{H} \hat{\boldsymbol{\beta}}^{F M}-\mathbf{h}\right) .
$$

## A Unrevealing Tale of Underfitted Model

## Submodel Estimators are BIASED!!!

An interesting application of the restriction is that $\beta$ can be partitioned as $\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}^{\prime}, \boldsymbol{\beta}_{2}^{\prime}\right)^{\prime}$, if model is sparse, then $\boldsymbol{\beta}_{2}=\mathbf{0}$

## Sparsity is the Name of the Game? Really!

## Unbearable Truth about Submodel Estimation

$$
E\left(\hat{\boldsymbol{\beta}}_{1}\right)=\boldsymbol{\beta}_{1}-\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{X}_{2} \boldsymbol{\beta}_{2} .
$$

Clearly $\hat{\boldsymbol{\beta}}_{1}$ is a biased estimator.

- unless the regression coefficients corresponding to deleted variables ( $\boldsymbol{\beta}_{2}$ ) are zero
- or the retained variables are orthogonal to the deleted variables, $\mathbf{X}_{1}^{\prime} \mathbf{X}_{2}=\mathbf{0}$
- Submodel estimates have smaller MSE than Full model estimates when the deleted regression variables have regression coefficients that are smaller than the standard errors of their estimates in full model.
- A naive data analyst may not comprehend that by dropping $\mathrm{X}_{2}$ from the model, $\mathrm{S} /$ he risk letting $\mathrm{X}_{2} \boldsymbol{\beta}_{2}$ covertly influence the estimation and testing of $\beta_{1}$.


## Pretest Estimation Strategy

The pretest estimator (PTE) of $\boldsymbol{\beta}$ based on $\hat{\boldsymbol{\beta}}^{F M}$ and $\hat{\boldsymbol{\beta}}^{S M}$ is defined as

$$
\hat{\boldsymbol{\beta}}^{P T}=\hat{\boldsymbol{\beta}}^{F M}-\left(\hat{\boldsymbol{\beta}}^{F M}-\hat{\boldsymbol{\beta}}^{S M}\right) l\left(T_{n} \leq \chi_{p_{2}, \alpha}^{2}\right), \quad p_{2} \geq 1
$$

$I(A)$ is an indicator function of a set $A$ and $\chi_{p_{2}, \alpha}^{2}$ is the $\alpha$-level critical value of the distribution of $T_{n}$ under $H_{0}$.

## HOW TO CONTROL BIAS

## Shrinkage Estimation Strategy

$$
\hat{\beta}^{S}=\hat{\beta}^{S M}+\left(1-\left(p_{2}-2\right) T_{n}^{-1}\right)\left(\hat{\beta}^{F M}-\hat{\beta}^{S M}\right), \quad p_{2} \geq 3,
$$

Possible over-shrinking problem is defined as

where $z^{+}=\max (0, z)$.

## Shrinkage Estimation Strategy

$$
\hat{\beta}^{S}=\hat{\beta}^{S M}+\left(1-\left(p_{2}-2\right) T_{n}^{-1}\right)\left(\hat{\beta}^{F M}-\hat{\beta}^{S M}\right), \quad p_{2} \geq 3,
$$

Possible over-shrinking problem is defined as

where $z^{+}=\max (0, z)$.

## Shrinkage Estimation Strategy

$$
\hat{\beta}^{S}=\hat{\beta}^{S M}+\left(1-\left(p_{2}-2\right) T_{n}^{-1}\right)\left(\hat{\beta}^{F M}-\hat{\beta}^{S M}\right), \quad p_{2} \geq 3,
$$

Possible over-shrinking problem is defined as

$$
\hat{\boldsymbol{\beta}}^{S+}=\hat{\beta}^{S M}+\left(1-\left(p_{2}-2\right) T_{n}^{-1}\right)^{+}\left(\hat{\boldsymbol{\beta}}^{F M}-\hat{\boldsymbol{\beta}}^{S M}\right),
$$

where $z^{+}=\max (0, z)$.

## Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
- Data pooling problem based on a pretest. This stream followed by a host of researchers.
- Model misspecification problem in linear regression model based on a pretest.
- Stein $(1956,1961)$ developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.


## Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
- Data pooling problem based on a pretest. This stream followed by a host of researchers.
- Model misspecification problem in linear regression model based on a pretest.
- Stein $(1956,1961)$ developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.


## Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
- Data pooling problem based on a pretest. This stream followed by a host of researchers.
- Model misspecification problem in linear regression model based on a pretest.
- Stein $(1956,1961)$ developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.


## Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
- Data pooling problem based on a pretest. This stream followed by a host of researchers.
- Model misspecification problem in linear regression model based on a pretest.
- Stein $(1956,1961)$ developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.


## Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
- Data pooling problem based on a pretest. This stream followed by a host of researchers.
- Model misspecification problem in linear regression model based on a pretest.
- Stein $(1956,1961)$ developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.


## Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
- Data pooling problem based on a pretest. This stream followed by a host of researchers.
- Model misspecification problem in linear regression model based on a pretest.
- Stein $(1956,1961)$ developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.


# Big Data Analysis - High Dimensional Estimation Problem 

Penalty Estimation Strategy

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman,1993).


# Big Data Analysis - High Dimensional Estimation Problem 

## Penalty Estimation Strategy

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman,1993).


# Big Data Analysis - High Dimensional Estimation Problem 

## Penalty Estimation Strategy

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman, 1993).


## Big Data Analysis - High Dimensional Estimation Problem

## Penalty Estimation Strategy

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman,1993).


## Big Data Analysis

## Penalty Estimation Strategy

- For a given penalty function $\pi(\cdot)$ and regularization parameter $\lambda$, the general form of the objective function can be written as

$$
\phi(\boldsymbol{\beta})=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda \pi(\boldsymbol{\beta}),
$$

- Penalty function is of the form

$$
\begin{equation*}
\pi(\beta)=\sum_{j=1}^{p}\left|\beta_{j}\right|^{\gamma}, \gamma>0 \tag{1}
\end{equation*}
$$

## Big Data Analysis

## Penalty Estimation Strategy

- For a given penalty function $\pi(\cdot)$ and regularization parameter $\lambda$, the general form of the objective function can be written as

$$
\phi(\boldsymbol{\beta})=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda \pi(\boldsymbol{\beta})
$$

- Penalty function is of the form


## Big Data Analysis

## Penalty Estimation Strategy

- For a given penalty function $\pi(\cdot)$ and regularization parameter $\lambda$, the general form of the objective function can be written as

$$
\phi(\boldsymbol{\beta})=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})+\lambda \pi(\boldsymbol{\beta})
$$

- Penalty function is of the form

$$
\begin{equation*}
\pi(\boldsymbol{\beta})=\sum_{j=1}^{p}\left|\beta_{j}\right|^{\gamma}, \gamma>0 \tag{1}
\end{equation*}
$$

## Big Data Analysis

## Penalty Estimation Strategy

For $\gamma=2$, we have ridge estimates which are obtained by minimizing the penalized residual sum of squares

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}^{\text {ridge }}=\arg \min _{\beta}\left\|\boldsymbol{y}-\sum_{j=1}^{p} \boldsymbol{x}_{j} \beta_{j}\right\|^{2}+\lambda \sum_{j=1}^{p}\left\|\beta_{j}\right\|^{2}, \tag{2}
\end{equation*}
$$

$\lambda$ is the tuning parameter which controls the amount of shrinkage and $\|\cdot\|=\|\cdot\|_{2}$ is the $L_{2}$ norm.

## Big Data Analysis

## Penalty Estimation Strategy

- For $\gamma<2$, it shrinks the coefficient towards zero, and depending on the value of $\lambda$, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the $L_{1}$ penalized least squares estimator, which is obtained when $\gamma=1$.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)


## Big Data Analysis

## Penalty Estimation Strategy

- For $\gamma<2$, it shrinks the coefficient towards zero, and depending on the value of $\lambda$, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the $L_{1}$ penalized least squares estimator, which is obtained when $\gamma=1$
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)


## Big Data Analysis

## Penalty Estimation Strategy

- For $\gamma<2$, it shrinks the coefficient towards zero, and depending on the value of $\lambda$, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the $L_{1}$ penalized least squares estimator, which is obtained when $\gamma=1$
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)


## Big Data Analysis

## Penalty Estimation Strategy

- For $\gamma<2$, it shrinks the coefficient towards zero, and depending on the value of $\lambda$, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the $L_{1}$ penalized least squares estimator, which is obtained when $\gamma=1$.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)


## Big Data Analysis

## Penalty Estimation Strategy

- For $\gamma<2$, it shrinks the coefficient towards zero, and depending on the value of $\lambda$, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the $L_{1}$ penalized least squares estimator, which is obtained when $\gamma=1$.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)


## Big Data Analysis

## Penalty Estimation Strategy

- LASSO is closely related to the ridge regression and its solutions are similarly obtained by replacing the squared penalty $\left\|\beta_{j}\right\|^{2}$ in the ridge solution (3) with the absolute penalty $\left\|\beta_{j}\right\|_{1}$ in the LASSO-



## Good Strategy if Model is Truly Sparse

## Big Data Analysis

## Penalty Estimation Strategy

- LASSO is closely related to the ridge regression and its solutions are similarly obtained by replacing the squared penalty $\left\|\beta_{j}\right\|^{2}$ in the ridge solution (3) with the absolute penalty $\left\|\beta_{j}\right\|_{1}$ in the LASSO-

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}^{\mathrm{LASSO}}=\arg \min _{\beta}\left\|\boldsymbol{y}-\sum_{j=1}^{p} \boldsymbol{X}_{j} \beta_{j}\right\|^{2}+\lambda \sum_{j=1}^{p}\left\|\beta_{j}\right\|_{1} \tag{3}
\end{equation*}
$$

## Good Strategy if Model is Truly Sparse

## Penalty Estimation Family Ever Growing!!

## Adaptive LASSO (aLASSO)

## Elastic Net Penalty

## Minimax Concave Penalty (MCP)

## SCAD

# Innate Difficulties: Can Signals be Septated from Noise? 

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic pronerties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.


## Innate Difficulties: Can Signals be Septated from Noise?

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.


## Innate Difficulties: Can Signals be Septated from Noise?

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both
true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few
are not
- Nonzero coefficients are big enough to to be separated from zero ones.


## Innate Difficulties: Can Signals be Septated from Noise?

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few
are not
- Nonzero coefficients are big enough to to be separated from zero ones.


## Innate Difficulties: Can Signals be Septated from Noise?

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0 ), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.


## Innate Difficulties: Can Signals be Septated from Noise?

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0 ), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.


## Innate Difficulties: Ultrahigh Dimensional Features

- In genetic micro-array studies, $n$ is measured in hundreds, the number of features $p$ per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension $p$ becomes extremely large compared with sample size $n$.
- There are still challenging problems when $p$ grows at a non-polynomial rate with $n$.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.


## Innate Difficulties: Ultrahigh Dimensional Features

- In genetic micro-array studies, $n$ is measured in hundreds, the number of features $p$ per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension $p$ becomes extremely large compared with sample size $n$.
- There are still challenging problems when $p$ grows at a non-polynomial rate with $n$.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.


## Innate Difficulties: Ultrahigh Dimensional Features

- In genetic micro-array studies, $n$ is measured in hundreds, the number of features $p$ per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension $p$ becomes extremely large compared with sample size $n$.
- There are still challenging nroblems when $p$ grows at a non-polynomial rate with $n$.
- Non-polynomial dimensionality poses substantial computational challenges. The developments in the arena of penalty estimation is still infancy


## Innate Difficulties: Ultrahigh Dimensional Features

- In genetic micro-array studies, $n$ is measured in hundreds, the number of features $p$ per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension $p$ becomes extremely large compared with sample size $n$.
- There are still challenging problems when $p$ grows at a non-polynomial rate with $n$.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.


## Innate Difficulties: Ultrahigh Dimensional Features

- In genetic micro-array studies, $n$ is measured in hundreds, the number of features $p$ per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension $p$ becomes extremely large compared with sample size $n$.
- There are still challenging problems when $p$ grows at a non-polynomial rate with $n$.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.


## Innate Difficulties: Ultrahigh Dimensional Features

- In genetic micro-array studies, $n$ is measured in hundreds, the number of features $p$ per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension $p$ becomes extremely large compared with sample size $n$.
- There are still challenging problems when $p$ grows at a non-polynomial rate with $n$.
- Non-polynomial dimensionality poses substantial computational challenges.



## Innate Difficulties: Ultrahigh Dimensional Features

- In genetic micro-array studies, $n$ is measured in hundreds, the number of features $p$ per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension $p$ becomes extremely large compared with sample size $n$.
- There are still challenging problems when $p$ grows at a non-polynomial rate with $n$.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.


## Can Noise be Septated from Signals?

Pretest and Shrinkage Strategies are Useful in this Situation

## Extension and Comparison with non-penality Estimators

- Ahmed et al. $(2008,2009)$ for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014)for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.


## Can Noise be Septated from Signals?

## Pretest and Shrinkage Strategies are Useful in this Situation

## Extension and Comparison with non-penalty Estimators

> - Ahmed et al. $(2008,2009)$ for partially linear models.
> - Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014)for partially linear models with Random Coefficient autoregressive Errors.

- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.


## Can Noise be Septated from Signals?

Pretest and Shrinkage Strategies are Useful in this Situation

## Extension and Comparison with non-penalty Estimators

- Ahmed et al. $(2008,2009)$ for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014)for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.


## Can Noise be Septated from Signals?

## Pretest and Shrinkage Strategies are Useful in this Situation

## Extension and Comparison with non-penalty Estimators

- Ahmed et al. $(2008,2009)$ for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014)for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.


## Can Noise be Septated from Signals?

## Pretest and Shrinkage Strategies are Useful in this Situation

## Extension and Comparison with non-penalty Estimators

- Ahmed et al. $(2008,2009)$ for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014)for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.


## Can Noise be Septated from Signals?

## Pretest and Shrinkage Strategies are Useful in this Situation

## Extension and Comparison with non-penalty Estimators

- Ahmed et al. $(2008,2009)$ for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014)for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.


## Penalty Estimation

## Extension and Comparison with non-penalty Estimators

- S. E. Ahmed (2014). Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation. Springer.
- S. E. Ahmed (Editor). Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.


## Penalty Estimation

## Extension and Comparison with non-penalty Estimators

- S. E. Ahmed (2014). Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation. Springer.
- S. E. Ahmed (Editor). Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.


## Penalty Estimation

## Extension and Comparison with non-penalty Estimators

- S. E. Ahmed (2014). Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation. Springer.
- S. E. Ahmed (Editor). Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.


## Penalty Estimation

## Extension and Comparison with non-penalty Estimators

- S. E. Ahmed (2014). Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation. Springer.
- S. E. Ahmed (Editor). Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.


## Shrinkage Estimation for Big Data

- The classical shrinkage estimation methods are limited to fixed $p$.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of $\sqrt{n}$.
- When $p_{n}>n$, a component-wise consistent estimator of $\boldsymbol{\beta}_{n}$ is not available since $\boldsymbol{\beta}_{n}$ is not identifiable.
- Here $\boldsymbol{\beta}_{n}$ is not identifiable in the sense that there always exist two different estimations of $\beta_{n}, \beta_{n}^{(1)}$ and $\beta_{n}^{(2)}$, such that $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(1)}=\mathbf{x}_{j}^{\prime} \boldsymbol{\beta}_{n}^{(2)}$ for $1 \leq i \leq n$.


## Shrinkage Estimation for Big Data

- The classical shrinkage estimation methods are limited to fixed $p$.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of $\sqrt{n}$.
- When $p_{n}>n$, a component-wise consistent estimator of $\boldsymbol{\beta}_{n}$ is not available since $\boldsymbol{\beta}_{n}$ is not identifiable.
- Here $\boldsymbol{\beta}_{n}$ is not identifiable in the sense that there always exist two different estimations of $\beta_{n}, \beta_{n}^{(1)}$ and $\beta_{n}^{(2)}$, such that $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(1)}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(2)}$ for $1 \leq i \leq n$.


## Shrinkage Estimation for Big Data

- The classical shrinkage estimation methods are limited to fixed $p$.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of $\sqrt{n}$.
- When $p_{n}>n$, a component-wise consistent estimator of $\boldsymbol{\beta}_{n}$ is not available since $\boldsymbol{\beta}_{n}$ is not identifiable.
- Here $\boldsymbol{\beta}_{n}$ is not identifiable in the sense that there always exist two different estimations of $\beta_{n}, \beta_{n}^{(1)}$ and $\beta_{n}^{(2)}$, such that $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(1)}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(2)}$ for $1 \leq i \leq n$.


## Shrinkage Estimation for Big Data

- The classical shrinkage estimation methods are limited to fixed $p$.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of $\sqrt{n}$.
- When $p_{n}>n$, a component-wise consistent estimator of $\boldsymbol{\beta}_{n}$ is not available since $\boldsymbol{\beta}_{n}$ is not identifiable.
- Here $\beta_{n}$ is not identifiable in the sense that there always exist two different estimations of $\boldsymbol{\beta}_{n}, \boldsymbol{\beta}_{n}^{(1)}$ and $\boldsymbol{\beta}_{n}^{(2)}$, such that $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(1)}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(2)}$ for $1 \leq i \leq n$.


## Shrinkage Estimation for Big Data

- The classical shrinkage estimation methods are limited to fixed $p$.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of $\sqrt{n}$.
- When $p_{n}>n$, a component-wise consistent estimator of $\boldsymbol{\beta}_{n}$ is not available since $\boldsymbol{\beta}_{n}$ is not identifiable.
- Here $\boldsymbol{\beta}_{n}$ is not identifiable in the sense that there always exist two different estimations of $\boldsymbol{\beta}_{n}, \boldsymbol{\beta}_{n}^{(1)}$ and $\boldsymbol{\beta}_{n}^{(2)}$, such that $\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(1)}=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}_{n}^{(2)}$ for $1 \leq i \leq n$.


## Shrinkage Estimation for Big Data

- we write the $p_{n}$-dimensional coefficients vector $\boldsymbol{\beta}_{n}=\left(\boldsymbol{\beta}_{1 n}^{\prime}, \boldsymbol{\beta}_{2 n}^{\prime}\right)^{\prime}$, where $\boldsymbol{\beta}_{1 n}$ is the coefficient vector for main covariates, $\boldsymbol{\beta}_{2 n}$ include all nuisance parameters.
- Sub-vectors $\boldsymbol{\beta}_{1 n}, \boldsymbol{\beta}_{2 n}$, have dimensions $p_{1 n}, p_{2 n}$, respectively, where $p_{1 n} \leq n$ and $p_{1 n}+p_{2 n}=p_{n}$.
- Let $\mathbf{X}_{1 n}$ and $\mathbf{X}_{2 n}$ be the sub-matrices of $\mathbf{X}_{n}$ corresponding to $\beta_{1 n}$ and $\beta_{2 n}$, respectively.
- Let us assume true parameter vector

$$
\boldsymbol{\beta}_{0}=\left(\beta_{01}, \cdots, \beta_{0 p_{n}}\right)^{\prime}=\left(\boldsymbol{\beta}_{10}^{\prime}, \boldsymbol{\beta}_{20}^{\prime}\right)^{\prime} .
$$

## Shrinkage Estimator for High Dimensional Data

- Let $S_{10}$ and $S_{20}$ represent the corresponding index sets for $\boldsymbol{\beta}_{10}$ and $\boldsymbol{\beta}_{20}$, respectively.
- Specifically, $S_{10}$ includes important predictors and $S_{20}$ includes sparse and weak signals satisfying the following assumption.
(A0) $\left|\beta_{0 j}\right|=O\left(n^{-\varsigma}\right)$, for $\forall j \in S_{20}$, where $\varsigma>1 / 2$ does not change with $n$.
- Condition (A0) is considered to be the sparsity of the model. A simpler representation for the finite sample is that $\beta_{0 j}=0 \forall j \in S_{20}$, that is, most coefficients are 0 exactly.


## Shrinkage Estimator for High Dimensional Data

## A Class of Submodels

- Predictors indexed by $S_{10}$ are used to construct a submodel.
- However, other predictors, especially ones in $S_{20}$ may also make some contributions to the response and cannot be ignored.

Consider

$$
\text { UPI or AI : } \quad\left(\boldsymbol{\beta}_{20}^{\prime}\right)^{\prime}=\mathbf{0}_{p_{2 n}} .
$$

## A Candidate Submodel Estimator

We make the following assumptions on the random error and design matrix of the true model:
(A1) The random error $\epsilon_{i}$ 's are independent and identically distributed with mean 0 and variance $0<\sigma^{2}<\infty$. Further, $E\left(\epsilon_{i}^{m}\right)<\infty$, for an even integer $m$ not depending on $n$.
(A2) $\rho_{1 n}>0$, for all $n$, the smallest eigenvalue of $\mathbf{C}_{12 n}$

Under (A1-A2) and UPI/AE, the submodel estimator (SME) of $\boldsymbol{\beta}_{1 n}$ is defined as

$$
\hat{\boldsymbol{\beta}}_{1 n}^{S M}=\left(\mathbf{X}_{1 n}^{\prime} \mathbf{X}_{1 n}\right)^{-1} \mathbf{X}_{1 n}^{\prime} \mathbf{y}
$$

## A Candidate Full Model Estimator

## Weighted Ridge Estimation

We estimate an estimator of $\boldsymbol{\beta}_{n}$ by minimizing a partial penalized objective function,

$$
\hat{\boldsymbol{\beta}}\left(r_{n}\right)=\operatorname{argmin}\left\{\left\|\mathbf{y}-\mathbf{X}_{1 n} \boldsymbol{\beta}_{1 n}-\mathbf{X}_{2 n} \boldsymbol{\beta}_{2 n}\right\|^{2}+r_{n}\left\|\boldsymbol{\beta}_{2 n}\right\|^{2}\right\}
$$

where " $\|\cdot\|$ " is the $\ell_{2}$ norm and $r_{n}>0$ is a tuning parameter.

## Weighted Ridge Estimation

Since $p_{n} \gg n$ and under the sparsity assumption Define

$$
a_{n}=c_{1} n^{-\omega}, \quad 0<\omega \leq 1 / 2, c_{1}>0 .
$$

We define a weighted ridge estimator of $\boldsymbol{\beta}_{n}$ is denoted as

$$
\hat{\boldsymbol{\beta}}_{n}^{W R}\left(r_{n}, a_{n}\right)=\binom{\hat{\boldsymbol{\beta}}_{1 n}^{W R}\left(r_{n}\right)}{\hat{\boldsymbol{\beta}}_{2 n}^{W R}\left(r_{n}, a_{n}\right)} \text {, where }
$$

$$
\hat{\boldsymbol{\beta}}_{1 n}^{W R}\left(r_{n}\right)=\hat{\beta}_{1 n}\left(r_{n}\right)
$$

and for $j \notin S_{10}$,

$$
\hat{\beta}_{j}^{\mathrm{WR}}\left(r_{n}, a_{n}\right)= \begin{cases}\hat{\beta}_{j}\left(r_{n}, a_{n}\right), & \hat{\beta}_{j}\left(r_{n}, a_{n}\right)>a_{n} \\ 0, & \text { otherwise }\end{cases}
$$

## Weighted Ridge Estimation

- We call $\hat{\beta}\left(r_{n}, a_{n}\right)$ as a weighted ridge estimator from two aspects.
- We use a weighted ridge instead of ridge penalty for the HD shrinkage estimation strategy since we do not want to generate some additional biases caused by an additional penalty on $\beta_{1 n}$ if we already have a candidate subset model.
- Here $\hat{\beta}_{1 n}^{W R}\left(r_{n}\right)$ changes with $r_{n}$ and $\hat{\beta}_{2 n}^{W R}\left(r_{n}, a_{n}\right)$ changes with both $r_{n}$ and $a_{n}$.
- For the notation's convenience, we denote the weighted ridge estimators as $\hat{\beta}_{1 n}^{W R}$ and $\hat{\beta}_{2 n}^{W R}$.


## A Candidate HD Shrinkage Estimator

A HD shrinkage estimators (HD-SE) $\hat{\boldsymbol{\beta}}_{1 n}^{S}$ is

$$
\hat{\boldsymbol{\beta}}_{1 n}^{S}=\hat{\boldsymbol{\beta}}_{1 n}^{W R}-(h-2) T_{n}^{-1}\left(\hat{\boldsymbol{\beta}}_{1 n}^{W R}-\hat{\boldsymbol{\beta}}_{1 n}^{S M}\right),
$$

$h>2$ is the number of nonzero elements in $\hat{\beta}_{2 n}^{W R}$

$$
\begin{gather*}
T_{n}=\left(\hat{\boldsymbol{\beta}}_{2}^{W R}\right)^{\prime}\left(\mathbf{X}_{2}^{\prime} \mathbf{M}_{1} \mathbf{X}_{2}\right) \hat{\boldsymbol{\beta}}_{2}^{W R} / \hat{\sigma}^{2}  \tag{4}\\
\mathbf{M}_{1}=\mathbf{I}_{n}-\mathbf{X}_{1 n}\left(\mathbf{X}_{1 n}^{\prime} \mathbf{X}_{1 n}\right)^{-1} \mathbf{X}_{1 n}^{\prime}
\end{gather*}
$$

- $\hat{\sigma}^{2}$ is a consistent estimator of $\sigma^{2}$.
- For example, we can choose

$$
\hat{\sigma}^{2}=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}^{S M}\right)^{2} /(n-1) \text { under UPI or AI. }
$$

## A Candidate HD Positive Shrinkage Estimator

A HD positive shrinkage estimator (HD-PSE),

$$
\hat{\boldsymbol{\beta}}_{1 n}^{P S E}=\hat{\boldsymbol{\beta}}_{1 n}^{W R}-\left((h-2) T_{n}^{-1}\right)_{1}\left(\hat{\boldsymbol{\beta}}_{1 n}^{W R}-\hat{\boldsymbol{\beta}}_{1 n}^{S M}\right),
$$

where $(a)_{1}=1$ and $a$ for $a>1$ and $a \leq 1$, respectively.

## Consistency and Asymptotic Normality

## Weighted Ridge Estimation

Let $s_{n}^{2}=\sigma^{2} \mathbf{d}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{d}_{n}$ for any $p_{12 n} \times 1$ vector $\mathbf{d}_{n}$ satisfying $\left\|\mathbf{d}_{n}\right\| \leq 1$.

$$
\begin{aligned}
n^{1 / 2} \boldsymbol{s}_{n}^{-1} \mathbf{d}_{n}^{\prime}\left(\hat{\boldsymbol{\beta}}_{12 n}^{W R}-\boldsymbol{\beta}_{120}\right)= & n^{-1 / 2} \boldsymbol{s}_{n}^{-1} \sum_{i=1}^{n} \epsilon_{i} \mathbf{d}_{n}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{z}_{i}+o_{P}(1) \\
& \xrightarrow[\rightarrow]{\mathrm{d}} N(0,1)
\end{aligned}
$$

## Asymptotic Distributional Risk

Define

$$
\begin{aligned}
& \boldsymbol{\Sigma}_{n 11}=\lim _{n \rightarrow \infty} \mathbf{X}_{1 n}^{\prime} \mathbf{X}_{1 n} / n, \quad \boldsymbol{\Sigma}_{n 22}=\lim _{n \rightarrow \infty} \mathbf{X}_{2 n}^{\prime} \mathbf{X}_{2 n} / n, \\
& \boldsymbol{\Sigma}_{n 12}=\lim _{n \rightarrow \infty} \mathbf{X}_{1 n}^{\prime} \mathbf{X}_{2 n} / n, \quad \boldsymbol{\Sigma}_{n 21}=\lim _{n \rightarrow \infty} \mathbf{X}_{2 n}^{n} \mathbf{X}_{1 n} / n, \\
& \boldsymbol{\Sigma}_{n 22.1}=\lim _{n \rightarrow \infty} n^{-1} \mathbf{X}_{2 n}^{\prime} \mathbf{X}_{2 n}-\mathbf{X}_{2 n}^{\prime} \mathbf{X}_{1 n}\left(\mathbf{X}_{1 n}^{\prime} \mathbf{X}_{1 n}\right)^{-1} \mathbf{X}_{1 n}^{\prime} \mathbf{X}_{2 n} \\
& \boldsymbol{\Sigma}_{n 11.2}=\lim _{n \rightarrow \infty} n^{-1} \mathbf{X}_{1 n}^{\prime} \mathbf{X}_{1 n}-\mathbf{X}_{1 n}^{\prime} \mathbf{X}_{2 n}\left(\mathbf{X}_{2 n}^{\prime} \mathbf{X}_{2 n}\right)^{-1} \mathbf{X}_{2 n}^{\prime} \mathbf{X}_{1 n}
\end{aligned}
$$

## Asymptotic Distributional Risk (ADR)

$$
\begin{gathered}
K_{n}: \boldsymbol{\beta}_{20}=n^{-1 / 2} \boldsymbol{\delta} \quad \text { and } \quad \boldsymbol{\beta}_{30}=\mathbf{0}_{p_{3 n}}, \\
\boldsymbol{\delta}=\left(\delta_{1}, \delta_{2}, \cdots, \delta_{p_{2 n}}\right)^{\prime} \in \mathfrak{R}^{p_{2 n}, \delta_{j}} \quad \text { is fixed. }
\end{gathered}
$$

- Define $\Delta_{n}=\boldsymbol{\delta}^{\prime} \boldsymbol{\Sigma}_{n 22.1} \boldsymbol{\delta}$,
- $n^{1 / 2} \mathbf{d}_{1 n}^{\prime} s_{1 n}^{-1}\left(\boldsymbol{\beta}_{1 n}^{*}-\boldsymbol{\beta}_{10}\right)$ is asymptotically normal under $\left\{K_{n}\right\}$, where $s_{1 n}^{2}=\sigma^{2} \mathbf{d}_{1 n}^{\prime} \boldsymbol{\Sigma}_{n 11.2}^{-1} \mathbf{d}_{1 n}$.
- The asymptotic distributional risk (ADR) of $\mathbf{d}_{1 n}^{\prime} \boldsymbol{\beta}_{1 n}^{*}$ is

$$
\operatorname{ADR}\left(\mathbf{d}_{1 n}^{\prime} \boldsymbol{\beta}_{1 n}^{*}\right)=\lim _{n \rightarrow \infty} E\left\{\left[n^{1 / 2} s_{1 n}^{-1} \mathbf{d}_{1 n}^{\prime}\left(\boldsymbol{\beta}_{1 n}^{*}-\boldsymbol{\beta}_{10}\right)\right]^{2}\right\}
$$

## Asymptotic Distributional Risk

## Mathematical Proof

Under regularity conditions and $K_{n}$, and suppose there exists $0 \leq c \leq 1$ such that $c=\lim _{n \rightarrow \infty} s_{1 n}^{-2} \mathbf{d}_{1 n}^{\prime} \Sigma_{n 11}^{-1} \mathbf{d}_{1 n}$, we have

$$
\begin{align*}
& \operatorname{ADR}\left(\mathbf{d}_{1 n}^{\prime} \hat{\boldsymbol{\beta}}_{1 n}^{W R}\right)=1  \tag{5a}\\
& \operatorname{ADR}\left(\mathbf{d}_{1 n}^{\prime} \hat{\boldsymbol{\beta}}_{1 n}^{S M}\right)=1-(1-c)\left(1-\Delta_{\mathbf{d}_{1 n}}\right),  \tag{5b}\\
& \operatorname{ADR}\left(\mathbf{d}_{1 n}^{\prime} \hat{\boldsymbol{\beta}}_{1 n}^{S}\right)=1-E\left[g_{1}\left(\mathbf{z}_{2}+\boldsymbol{\delta}\right)\right],  \tag{5c}\\
& \operatorname{ADR}\left(\mathbf{d}_{1 n}^{\prime} \hat{\boldsymbol{\beta}}_{1 n}^{P S E}\right)=1-E\left[g_{2}\left(\mathbf{z}_{2}+\boldsymbol{\delta}\right)\right]  \tag{5d}\\
& \Delta_{\mathbf{d}_{1 n}}=\frac{\mathbf{d}_{1 n}^{\prime}\left(\boldsymbol{\Sigma}_{n 11}^{-1} \boldsymbol{\Sigma}_{n 12} \boldsymbol{\delta} \boldsymbol{\delta}^{\prime} \boldsymbol{\Sigma}_{n 21} \boldsymbol{\Sigma}_{n 11}^{-1}\right) \mathbf{d}_{1 n}}{\mathbf{d}_{1 n}^{\prime}\left(\boldsymbol{\Sigma}_{n 11}^{-1} \boldsymbol{\Sigma}_{n 12} \boldsymbol{\Sigma}_{n 22.1}^{-1} \boldsymbol{\Sigma}_{n 21} \boldsymbol{\Sigma}_{n 11}^{-1}\right) \mathbf{d}_{1 n}} . \\
& S_{2 n}^{-1} \mathbf{d}_{2 n}^{\prime} \mathbf{z}_{2} \rightarrow N(0,1) \\
& \mathbf{d}_{2 n}=\boldsymbol{\Sigma}_{n 21} \boldsymbol{\Sigma}_{n 11}^{-1} \mathbf{d}_{1 n} \\
& s_{2 n}^{2}=\mathbf{d}_{2 n}^{\prime} \boldsymbol{\Sigma}_{n 22.1}^{-1} \mathbf{d}_{2 n}
\end{align*}
$$

## Asymptotic Distributional Risk

## Mathematical Proof

$$
\begin{aligned}
g_{1}(\mathbf{x})= & \lim _{n \rightarrow \infty}(1-c) \frac{p_{2 n}-2}{\mathbf{x}^{\prime} \boldsymbol{\Sigma}_{n 22.1} \mathbf{x}}\left[2-\frac{\mathbf{x}^{\prime}\left(\left(p_{2 n}+2\right) \mathbf{d}_{2 n} \mathbf{d}_{2 n}^{\prime}\right) \mathbf{x}}{s_{2 n}^{2} \mathbf{x}^{\prime} \boldsymbol{\Sigma}_{n 22.1} \mathbf{x}}\right], \\
g_{2}(\mathbf{x})= & \lim _{n \rightarrow \infty} \frac{p_{2 n}-2}{\mathbf{x}^{\prime} \boldsymbol{\Sigma}_{n 22.1} \mathbf{x}}\left[(1-c)\left(2-\frac{\mathbf{x}^{\prime}\left(\left(p_{2 n}+2\right) \mathbf{d}_{2 n} \mathbf{d}_{2 n}^{\prime}\right) \mathbf{x}}{s_{2 n}^{2} \mathbf{x}^{\prime} \boldsymbol{\Sigma}_{n 22.1} \mathbf{x}}\right)\right] \\
& I\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma}_{n 22.1} \mathbf{x} \geq p_{2 n}-2\right) \\
& +\lim _{n \rightarrow \infty}\left[\left(2-s_{2 n}^{-2} \mathbf{x}^{\prime} \delta_{2 n} \delta_{2 n}^{\prime} \mathbf{x}\right)(1-c)\right] /\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma}_{n 22.1} \mathbf{x} \leq p_{2 n}-2\right)
\end{aligned}
$$

## Moral of the Story

## By Ignoring the Bias, it will Not go away!

- Submodel estimator provided by some existing variable selection techniques when $p_{n} \gg n$ are subject to BIAS.
- The prediction performance can be improved by the shrinkage strategy.
- Particulary when an under-fitted submodel is selected by an aggressive penalty parameter.


## Moral of the Story

## By Ignoring the Bias, it will Not go away!

- When $p \gg n$, we assume the true model is sparse in the sense that most coefficients goes to 0 when $n \rightarrow \infty$.
- However, it is realistic to assume that some $\beta_{j}$ may be small, but not exactly 0 .
- Such predictors with small amount of influence on the response variable are often ignored incorrectly in HD variable selection methods.
- We borrow (re-gain) some information from those predictors using the shrinkage strategy to improve the prediction performance.


## Engineering Proof: Simulation

- In all experiments, $\epsilon_{i}$ 's are simulated from i.i.d standard normal random variables, $x_{i s}=\left(\xi_{(i s)}^{1}\right)^{2}+\xi_{(i s)}^{2}$, where $\xi_{(i s)}^{1}$ and $\xi_{(i s)}^{2}, i=1, \cdots, n, s=1, \cdots, p_{n}$ are also independent copies of standard normal distribution.
- In all sampling experiments, we let $p_{n}=n^{\alpha}$ for different sample size $n$, where $\alpha$ changes from 1 to 1.8 with an increment of 0.2. The HD-PSE is computed for $r_{n}=p_{n}^{1 / 8}$ and $a_{n}=0.1 n^{-1 / 3}$.


## Simulation Results

## Engineering Proof

- The performance of an estimator of $\beta$ will be appraised using the mean squared error (MSE) criterion.
- All computations were conducted using the $\mathbf{R}$ statistical software.
- We have numerically calculated the relative MSE of the estimators with respect to $\hat{\boldsymbol{\beta}}^{W R}$ by simulation.
- The simulated relative efficiency (SRE) of the estimator $\beta^{\diamond}$ to the maximum likelihood estimator $\hat{\boldsymbol{\beta}}^{F M}$ is denoted by

$$
\operatorname{SRE}\left(\hat{\boldsymbol{\beta}}^{F M}: \boldsymbol{\beta}^{\diamond}\right)=\frac{\operatorname{MSE}\left(\hat{\boldsymbol{\beta}}^{W R}\right)}{\operatorname{MSE}\left(\boldsymbol{\beta}^{\diamond}\right)}
$$

- A SRE larger than one indicates the degree of superiority of the estimator $\boldsymbol{\beta}^{\diamond}$ over $\hat{\boldsymbol{\beta}}^{W R}$.


## Simulation Results

## Engineering Proof

## Relative Performance

- We let $\boldsymbol{\beta}_{10}=(1.5,3,2)^{\prime}$ be fixed for every design.
- Let $\Delta^{*}=\left\|\boldsymbol{\beta}_{20}-\mathbf{0}\right\|^{2}$ varying between 0 and 4 .
- We choose $n=30$ or 100 .

Table: Simulated RMSEs

| $(n, p)$ | $\Delta^{*}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {SM }}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {PSE }}$ | $(n, p)$ | $\Delta^{*}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {SM }}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {PSE }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | 16.654 | 4.101 |  | 0.00 | 8.953 | 5.385 |
|  | 0.05 | 8.202 | 3.446 |  | 0.05 | 4.456 | 3.794 |
|  | 0.20 | 2.855 | 2.610 |  | 0.20 | 1.551 | 3.216 |
|  | 0.25 | 2.074 | 2.437 |  | 0.25 | 1.422 | 2.833 |
|  | 0.30 | 1.857 | 2.180 |  | 0.30 | 1.091 | 2.459 |
| $(30,30)$ | 0.35 | 1.643 | 1.949 | $(30,59)$ | 0.35 | 0.986 | 2.447 |
|  | 0.80 | 0.649 | 1.506 |  | 0.80 | 0.542 | 1.601 |
|  | 2.50 | 0.232 | 1.160 |  | 2.50 | 0.234 | 1.171 |
|  | 3.30 | 0.170 | 1.095 |  | 3.30 | 0.210 | 1.108 |
|  |  |  |  |  |  |  |  |
|  | 0.00 | 12.672 | 4.260 |  | 0.00 | 5.546 | 5.388 |
|  | 0.05 | 2.546 | 3.538 |  | 0.05 | 1.255 | 1.900 |
|  | 0.10 | 1.129 | 3.256 |  | 0.15 | 0.441 | 1.322 |
|  | 0.20 | 0.628 | 2.948 |  | 0.20 | 0.361 | 1.382 |
|  | 0.25 | 0.481 | 3.366 |  | 0.25 | 0.316 | 1.358 |
|  | $100,158)$ | 0.40 | 0.311 | 2.272 | $(100,398)$ | 0.40 | 0.198 |
|  | 1.40 | 0.110 | 1.500 |  | 1.543 |  |  |
|  | 3.10 | 0.066 | 1.181 |  | 3.10 | 0.096 | 1.826 |
|  | 3.50 | 0.060 | 1.217 |  | 3.50 | 0.079 | 1.304 |
|  |  |  |  |  |  | 1.297 |  |



Figure: The top three panels (a-c) are for $n=30$ and $p_{n}=30,59,117$ from the left to the right. The bottom panels ( $\mathrm{d}-\mathrm{f}$ ) are for $n=100$ and $p_{n}=158,251,398$ from the left to the right. Solid curves: $\operatorname{RMSE}\left(\hat{\boldsymbol{\beta}}_{1 n}^{S M}\right)$; Dashed curves: $\operatorname{RMSE}\left(\hat{\boldsymbol{\beta}}_{1 n}^{P S E}\right)$.

## Shrinkage Versus Penalty Estimators

## Engineering Solution: Simulation Results

- Performance of HD-PSE relative to penalty estimators including Lasso, ALasso, SCAD, MCP and Threshold Ridge (TR).
- We let $\boldsymbol{\beta}_{10}=(1.5,3,2, \underbrace{0.1, \cdots, 0.1}_{p_{1 n}-3})^{\prime}, \boldsymbol{\beta}_{20}=\mathbf{0}_{p_{2 n}}^{\prime}$.
- The model includes some predictors with weak signals. We consider $n=30$ and $p_{1 n}=3,4,10,20$.
- We choose $a=3.7$ and $\gamma=3$ for SCAD and MCP, respectively.
- For TR, we choose $\alpha_{n}=c_{6} n^{-1 / 3}$ and $\lambda=c_{7}(\log \log n)^{3} / \alpha_{n}^{2}$, where $c_{6}$ and $c_{7}$ are two tuning parameters.
- All tuning parameters are chosen using the generalized cross validation.

(b)

(d)


Figure: RMSEs forn $=30$. Plots (a-d) are for $p_{1}=3,4,10,20$, respectively.

## S. Ejaz Ahmed




|  |  |  | $\hat{\boldsymbol{\beta}}_{1}$ SM | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {PSE }}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {SCAD }}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {MCP }}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {ALasso }}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {Lass }}$ |
| :--- | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| $p_{1}$ | $\hat{\boldsymbol{\beta}}_{1 n}^{\text {TR }}$ |  |  |  |  |  |  |  |
| 3 | 30 | 23.420 | 8.740 | 14.486 | 14.247 | 11.399 | 3.130 | 1.097 |
|  | 59 | 9.900 | 6.951 | 7.588 | 7.499 | 6.244 | 1.257 | 0.015 |
|  | 231 | 4.292 | 4.291 | 2.568 | 2.622 | 2.714 | 0.166 | 0.003 |
|  | 456 | 3.977 | 3.977 | 1.739 | 1.576 | 2.059 | 0.099 | 0.002 |
|  |  |  |  |  |  |  |  |  |
| 4 | 30 | 15.055 | 6.882 | 11.809 | 11.291 | 9.528 | 2.830 | 0.993 |
|  | 59 | 6.954 | 4.933 | 5.260 | 5.204 | 4.469 | 0.966 | 0.019 |
|  | 231 | 3.605 | 3.605 | 2.222 | 2.154 | 2.045 | 0.167 | 0.004 |
|  | 456 | 3.184 | 3.184 | 1.648 | 1.436 | 1.703 | 0.102 | 0.003 |
|  |  |  |  |  |  |  |  |  |
| 10 | 30 | 7.528 | 4.526 | 1.232 | 1.469 | 2.391 | 1.497 | 1.001 |
|  | 59 | 3.899 | 3.534 | 0.493 | 0.538 | 0.746 | 0.321 | 0.032 |
|  | 231 | 2.212 | 2.212 | 0.104 | 0.083 | 0.117 | 0.034 | 0.005 |
|  | 456 | 1.997 | 1.997 | 0.052 | 0.032 | 0.050 | 0.017 | 0.003 |
|  |  |  |  |  |  |  |  |  |
| 20 | 30 | 4.603 | 3.139 | 0.099 | 0.128 | 0.892 | 0.599 | 0.981 |
|  | 59 | 2.231 | 2.194 | 0.016 | 0.018 | 0.067 | 0.031 | 0.013 |
|  | 231 | 1.489 | 1.489 | 0.002 | 0.002 | 0.003 | 0.002 | 0.002 |
|  | 456 | 1.392 | 1.392 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 |

## Threshold Ridge Regression

A Threshold ridge (TR) for $1 \leq j \leq p_{n}$ of $\beta_{j}$ is given by (Shao and Deng (2008))

$$
\hat{\beta}_{j}^{\mathrm{TR}}=\left\{\begin{array}{cc}
\widetilde{\beta}_{j}, & \left|\widetilde{\beta}_{j}\right|>a_{n}, \\
0, & \left|\widetilde{\beta}_{j}\right| \leq a_{n},
\end{array}\right.
$$

where

$$
\widetilde{\beta}_{n}=\arg \min _{\beta}\left\{\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{p_{n}} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p_{n}} \beta_{j}^{2}\right\}
$$

and $a_{n}=c n^{-\omega}$ for $0<\omega<1 / 2$ and $c>0$.

## Shrinkage Versus Penalty Estimators

- The submodel estimator dominates all other estimators in the class, since $\hat{\boldsymbol{\beta}}^{S M}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller $p_{n}$.
- HD-PSE performs better than penalty estimators for larger $p_{n}$.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.


## Shrinkage Versus Penalty Estimators

- The submodel estimator dominates all other estimators in the class, since $\hat{\boldsymbol{\beta}}^{S M}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller $p_{n}$.
- HD-PSE performs better than penalty estimators for larger $p_{n}$.
- Penalty estimators are even less efficient than the weiahted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.


## Shrinkage Versus Penalty Estimators

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{S M}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller $p_{n}$.
- HD-PSE performs better than penalty estimators for larger $p_{n}$.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.


## Shrinkage Versus Penalty Estimators

- The submodel estimator dominates all other estimators in the class, since $\hat{\boldsymbol{\beta}}^{S M}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller $p_{n}$.
- HD-PSE performs better than penalty estimators for larger $p_{n}$.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.


## Shrinkage Versus Penalty Estimators

- The submodel estimator dominates all other estimators in the class, since $\hat{\boldsymbol{\beta}}^{S M}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller $p_{n}$.
- HD-PSE performs better than penalty estimators for larger $p_{n}$.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.


## Shrinkage Versus Penalty Estimators

- The submodel estimator dominates all other estimators in the class, since $\hat{\boldsymbol{\beta}}^{S M}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller $p_{n}$.
- HD-PSE performs better than penalty estimators for larger $p_{n}$.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.


## Shrinkage Versus Penalty Estimators

- The submodel estimator dominates all other estimators in the class, since $\hat{\boldsymbol{\beta}}^{S M}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller $p_{n}$.
- HD-PSE performs better than penalty estimators for larger $p_{n}$.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.


## Microarray Data Example

- We apply the proposed HD-PSE strategy to the data set reported in Scheetz et al. (2006) and also analyzed by Huang, Ma and Zhang (2008).
- In this dataset, 120 twelve-week-old male offsprings of F1 animals were selected for tissue harvesting from the eyes for microarray analysis.
- The microarrays used to analyze the RNA from the eyes of these F2 animals contain over 31, 042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array).


## Microarray Data Example

- Huang, Ma and Zhang (2008) studied a total of 18,976 probes including gene TRIM32, which was recently found to cause Bardet-Biedl syndrome (Chiang et al. (2006)), a genetically heterogeneous disease of multiple organ systems including the retina.
- A regression analysis was conducted to find the probes among the remaining 18,975 probes that are most related to TRIM32 (Probe ID: 1389163_at). Huang et al (2008) found 19 and 24 probes based on Lasso and adaptive Lasso methods, respectively.
- We compute HD-PSEs based on two different candidate subset models consisting of 24 and 19 probes selected from Lasso and adaptive Lasso, respectively.


## Microarray Data Example

- In the largest full set model, we consider at most 1,000 probes with the largest variances. Other smaller full set model with top $p_{n}$ probes are also considered.
- Here we choose different $p_{n}$ 's between 200 and 1,000.
- The relative prediction error (RPE) of the estimator $\boldsymbol{\beta}_{\mathcal{J}}^{*}$ relative to weighted ridge estimator $\hat{\boldsymbol{\beta}}_{\mathcal{J}}^{W R}$ is computed as follows

$$
\operatorname{RPE}\left(\boldsymbol{\beta}_{\mathcal{J}}^{*}\right)=\frac{\sum_{i=1}^{n}\left\|\mathbf{y}-\sum_{j \in \mathcal{J}} \mathbf{x}_{\mathcal{J}} \hat{\boldsymbol{\beta}}_{\mathcal{J}}^{W R}\right\|^{2}}{\sum_{i=1}^{n}\left\|\mathbf{y}-\sum_{j \in \mathcal{J}} \mathbf{X}_{\mathcal{J}} \boldsymbol{\beta}_{\mathcal{J}}^{*}\right\|^{2}}
$$

where $\mathcal{J}$ is the index of the submodel including either 24 or 19 elements.


- We generalized the classical Stein's shrinkage estimation to a high-dimensional sparse model with some predictors with weak signals.
- When $p_{n}$ grows with $n$ quickly, it is reasonable to suspect that most predictors do not contribute, that is model is sparse.
- We proposed a HD shrinkage estimation strategy by shrinking a weighted ridge estimator in the direction of a candidate submodel.


## Envoi

- Existing penalized regularization approaches have some advantages of generating a parsimony sparse model, but tends to ignore the possible small contributions from some predictors.
- Lasso-type methods provide estimation and prediction only based on the selected candidate submodel, which is often inefficient with the existence of mild or weak signals.
- Our proposed HD shrinkage strategy takes into account possible contributions of all other possible nuisance parameters and has dominant prediction performances over submodel estimates generated from Lasso-type methods, which depend strongly on the sparsity assumption of the true model.


## Is Classical Shrinkage Estimation Dead?

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## Is Classical Shrinkage Estimation Dead?

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## Is Classical Shrinkage Estimation Dead?

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## Is Classical Shrinkage Estimation Dead?

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## Long Live $L_{2}$ Shrinkage!

## World's Data is Growing Exponentially!

- How to Acquire, Manage, Process, Analyze and Make Sense of Big Data?
- Big data is the future of Science and Trans-disciplinary research in Statistical Sciences is a must.
- "Think of big data as an epic wave gathering now, starting to crest," says the Harvard Business Review. "If you want to catch it, you need people who can surf"
- By 2015 there will be 4.4 M jobs available globally for Big Data analysis.
- Are we training "Wave Jockeys"?


## World's Data is Growing Exponentially!

- A greater collaboration between statisticians, computer scientists and social scientists (Facebook clicks, Netflix queues, and GPS data, a few to mention, 12 billions devices are connected to internet).
- Data is never neutral and unbiased, we must pull expertise across a host of fields to combat the biases in the estimation.
- Need to be careful with algorithmic based predictions. For example, protein interaction prediction.
- "The purpose of computing is insight, not numbers." R.W. Hamming, 1962.
- "Big Data can't tell us why easily - it can only tell us the what, but most often that's enough." Mayer-Schonberger, CBC Radio.


## Clash of Cultures

Culture in Statistical Sciences

- Study classical problems - Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual


## Clash of Cultures

## Culture in Statistical Sciences

- Study classical problems - Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual


## Clash of Cultures

Culture in Statistical Sciences

- Study classical problems - Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual


## Clash of Cultures

Culture in Statistical Sciences

- Study classical problems - Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual


## Clash of Cultures

Culture in Statistical Sciences

- Study classical problems - Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual


## Clash of Cultures

## Culture in Statistical Sciences

- Study classical problems - Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual


## Clash of Cultures

## World is Changing

- Complex Problems, Approximate Solutions
- Visualizing Complex Data - Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks - Trans-disciplinary Research
- Glory of the Research Team


## Clash of Cultures

## World is Changing

- Complex Problems, Approximate Solutions
- Visualizing Complex Data - Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks - Trans-disciplinary Research
- Glory of the Research Team


## Clash of Cultures

## World is Changing

- Complex Problems, Approximate Solutions
- Visualizing Complex Data - Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks - Trans-disciplinary Research
- Glory of the Research Team


## Clash of Cultures

## World is Changing

- Complex Problems, Approximate Solutions
- Visualizing Complex Data - Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks - Trans-disciplinary Research
- Glory of the Research Team


## Clash of Cultures

## World is Changing

- Complex Problems, Approximate Solutions
- Visualizing Complex Data - Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks - Trans-disciplinary Research
- Glory of the Research Team


## Clash of Cultures

## World is Changing

- Complex Problems, Approximate Solutions
- Visualizing Complex Data - Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks - Trans-disciplinary Research
- Glory of the Research Team


## Thanks a bundle!

Thank you and thanks to organizers!

