Big Data Big Bias Small Surprise!

S. Ejaz Ahmed

Faculty of Math and Science Brock University, ON, Canada

sahmed5@brocku.ca www.brocku.ca/sahmed

HDDA-IV 2014 August 24-28, 2014 Joint Work with X. Gao

Asymptotic and Simulation Study

Applications

Envoi

Asymptotic and Simulation Study

Applications

Envoi

Asymptotic and Simulation Study

Applications

Envoi

Asymptotic and Simulation Study

Applications

Envoi

S. Ejaz Ahmed Big Data Analysis

Asymptotic and Simulation Study

Applications

Envoi

S. Ejaz Ahmed Big Data Analysis

Asymptotic and Simulation Study

Applications

S. Ejaz Ahmed Big Data Analysis

Consider a classical linear model with observed response variable y_i and covariates $\mathbf{x}_i = (x_{i1}, \cdots, x_{ip_n})'$ as follows,

$$y_i = \mathbf{x}'_i \beta_n + \epsilon_i, \quad 1 \leq i \leq n,$$

where $\beta_n = (\beta_1, \dots, \beta_{p_n})'$ is a p_n -dimensional vector of the unknown parameters, and ϵ_i 's are independent and identically distributed with center 0 and variance σ^2 .

Subscript *n* in p_n indicates that the number of coefficients may increase with the sample size *n*.

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

Candidate Full Model Estimation

A Great Deal of Redundancy in the Candidate Full Model

Too Many Nuisance Regression Parameters

Candidate Full Model is Sparse

We want to estimate β when it is plausible that β lie in the subspace

 $\mathbf{H}\boldsymbol{\beta} = \mathbf{h}$

• Human Eye: Uncertain Prior Information (UPI)

• Machine Eye: Auxiliary Information (AE)

UPI or AI: $H\beta = h$

In many applications it is assumed that model is sparse, i.e. $\beta = (\beta'_1, \beta'_2)', \quad \beta_2 = \mathbf{0}.$

We want to estimate β when it is plausible that β lie in the subspace

$\mathbf{H}\boldsymbol{\beta} = \mathbf{h}$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

UPI or AI: $H\beta = h$

In many applications it is assumed that model is sparse, i.e. $\beta = (\beta'_1, \beta'_2)', \quad \beta_2 = \mathbf{0}.$

We want to estimate β when it is plausible that β lie in the subspace

 $\mathbf{H}\boldsymbol{\beta} = \mathbf{h}$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

UPI or AI: $H\beta = h$

In many applications it is assumed that model is sparse, i.e. $\beta = (\beta'_1, \beta'_2)', \quad \beta_2 = 0.$

We want to estimate β when it is plausible that β lie in the subspace

$$\mathbf{H}\boldsymbol{\beta} = \mathbf{h}$$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

UPI or AI: $H\beta = h$

In many applications it is assumed that model is sparse, i.e. $\beta = (\beta'_1, \beta'_2)', \quad \beta_2 = 0.$

We want to estimate β when it is plausible that β lie in the subspace

$$\mathbf{H}\boldsymbol{\beta} = \mathbf{h}$$

- Human Eye: Uncertain Prior Information (UPI)
- Machine Eye: Auxiliary Information (AE)

UPI or
$$AI$$
: $\mathbf{H}\beta = \mathbf{h}$

In many applications it is assumed that model is sparse, i.e. $\beta = (\beta'_1, \beta'_2)', \quad \beta_2 = \mathbf{0}.$

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.

Maximum Likelihood

- Least Square
- Ridge regression Or any other

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.

- Maximum Likelihood
- Least Square
- Ridge regression Or any other

- Gauss offered two justifications for least squares: First, what we now call the maximum likelihood argument in the Gaussian error model. Second, the concept of risk and the start of what we now call the Gauss-Markov theorem.
- Stein's 1956 paper revealed that neither maximum likelihood estimators nor unbiased estimators have desirable risk functions when the dimension of the parameter space is not small.

$$\hat{\boldsymbol{\beta}}^{SM} = \hat{\boldsymbol{\beta}}^{FM} - (\mathbf{X}'\mathbf{X})^{-1}\mathbf{H}'(\mathbf{H}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{H}')^{-1}(\mathbf{H}\hat{\boldsymbol{\beta}}^{FM} - \mathbf{h}).$$

A Unrevealing Tale of Underfitted Model

Submodel Estimators are BIASED!!!

An interesting application of the restriction is that β can be partitioned as $\beta = (\beta'_1, \beta'_2)'$, if model is sparse, then $\beta_2 = \mathbf{0}$

Sparsity is the Name of the Game? Really!

Unbearable Truth about Submodel Estimation

$$E(\hat{\beta}_1) = \beta_1 - (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2\beta_2.$$

Clearly $\hat{\beta}_1$ is a biased estimator.

- unless the regression coefficients corresponding to deleted variables (β₂) are zero
- or the retained variables are orthogonal to the deleted variables, $X'_1 X_2 = 0$
- Submodel estimates have smaller MSE than Full model estimates when the deleted regression variables have regression coefficients that are smaller than the standard errors of their estimates in full model.
- A naive data analyst may not comprehend that by dropping X₂ from the model,S/he risk letting X₂β₂ covertly influence the estimation and testing of β₁.

Pretest Estimation Strategy

The pretest estimator (PTE) of β based on $\hat{\beta}^{\textit{FM}}$ and $\hat{\beta}^{\textit{SM}}$ is defined as

$$\hat{oldsymbol{eta}}^{PT}=\hat{oldsymbol{eta}}^{FM}-(\hat{oldsymbol{eta}}^{FM}-\hat{oldsymbol{eta}}^{SM})I(T_n\leq\chi^2_{p_2,lpha}),\quad p_2\geq1,$$

I(A) is an indicator function of a set A and $\chi^2_{p_2,\alpha}$ is the α -level

critical value of the distribution of T_n under H_0 .

Shrinkage Estimation Strategy

$$\hat{\beta}^{S}=\hat{\beta}^{SM}+\left(1-\left(p_{2}-2\right)T_{n}^{-1}\right)(\hat{\beta}^{FM}-\hat{\beta}^{SM}),\quad p_{2}\geq3,$$

Possible over-shrinking problem is defined as

$$\hat{\beta}^{S+} = \hat{\beta}^{SM} + \left(1 - (p_2 - 2)T_n^{-1}\right)^+ (\hat{\beta}^{FM} - \hat{\beta}^{SM}),$$

here $z^+ = max(0, z).$

Shrinkage Estimation Strategy

$$\hat{\beta}^{S}=\hat{\beta}^{SM}+\left(1-(p_{2}-2)T_{n}^{-1}\right)(\hat{\beta}^{FM}-\hat{\beta}^{SM}),\quad p_{2}\geq3,$$

Possible over-shrinking problem is defined as

$$\hat{eta}^{S+} = \hat{eta}^{SM} + \left(1 - (p_2 - 2)T_n^{-1}\right)^+ (\hat{eta}^{FM} - \hat{eta}^{SM}),$$

where $z^+ = max(0, z).$

Shrinkage Estimation Strategy

$$\hat{\beta}^{S}=\hat{\beta}^{SM}+\left(1-(p_{2}-2)T_{n}^{-1}\right)(\hat{\beta}^{FM}-\hat{\beta}^{SM}),\quad p_{2}\geq3,$$

Possible over-shrinking problem is defined as

$$\hat{\beta}^{S+} = \hat{\beta}^{SM} + \left(1 - (p_2 - 2)T_n^{-1}\right)^+ (\hat{\beta}^{FM} - \hat{\beta}^{SM}),$$

where $z^+ = max(0, z).$

- Bancroft (1944) suggested two problems on preliminary test strategy.
 - Data pooling problem based on a pretest. This stream followed by a host of researchers.
 - Model misspecification problem in linear regression model based on a pretest.
- Stein (1956, 1961) developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.

- Bancroft (1944) suggested two problems on preliminary test strategy.
 - Data pooling problem based on a pretest. This stream followed by a host of researchers.
 - Model misspecification problem in linear regression model based on a pretest.
- Stein (1956, 1961) developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.

- Bancroft (1944) suggested two problems on preliminary test strategy.
 - Data pooling problem based on a pretest. This stream followed by a host of researchers.
 - Model misspecification problem in linear regression model based on a pretest.
- Stein (1956, 1961) developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.

- Bancroft (1944) suggested two problems on preliminary test strategy.
 - Data pooling problem based on a pretest. This stream followed by a host of researchers.
 - Model misspecification problem in linear regression model based on a pretest.
- Stein (1956, 1961) developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.
Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
 - Data pooling problem based on a pretest. This stream followed by a host of researchers.
 - Model misspecification problem in linear regression model based on a pretest.
- Stein (1956, 1961) developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.

Executive Summary

- Bancroft (1944) suggested two problems on preliminary test strategy.
 - Data pooling problem based on a pretest. This stream followed by a host of researchers.
 - Model misspecification problem in linear regression model based on a pretest.
- Stein (1956, 1961) developed highly efficient shrinkage estimators in balanced designs. Most statisticians have ignored these (perhaps due to lack of understanding)
- Modern regularization estimation strategies based on penalized least squares with penalties extend Stein's procedures powerfully.

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman, 1993).

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman, 1993).

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman, 1993).

- The penalty estimators are members of the penalized least squares (PLS) family and they are obtained by optimizing a quadratic function subject to a penalty.
- A popular version of the PLS is given by Tikhonov (1963) regularization.
- A generalized version of penalty estimator is the bridge regression (Frank and Friedman, 1993).

Penalty Estimation Strategy

 For a given penalty function π(·) and regularization parameter λ, the general form of the objective function can be written as

$$\phi(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \lambda \pi(\boldsymbol{\beta}),$$

• Penalty function is of the form

$$\pi(\boldsymbol{\beta}) = \sum_{j=1}^{p} |\beta_j|^{\gamma}, \ \gamma > \mathbf{0}. \tag{1}$$

 For a given penalty function π(·) and regularization parameter λ, the general form of the objective function can be written as

$$\phi(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \lambda \pi(\boldsymbol{\beta}),$$

• Penalty function is of the form

$$\pi(\boldsymbol{\beta}) = \sum_{j=1}^{p} |\beta_j|^{\gamma}, \ \gamma > 0. \tag{1}$$

 For a given penalty function π(·) and regularization parameter λ, the general form of the objective function can be written as

$$\phi(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \lambda \pi(\boldsymbol{\beta}),$$

Penalty function is of the form

$$\pi(\boldsymbol{\beta}) = \sum_{j=1}^{p} |\beta_j|^{\gamma}, \ \gamma > \mathbf{0}. \tag{1}$$

Penalty Estimation Strategy

For $\gamma = 2$, we have ridge estimates which are obtained by minimizing the penalized residual sum of squares

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \left\| \left| \boldsymbol{y} - \sum_{j=1}^{p} \boldsymbol{X}_{j} \beta_{j} \right\|^{2} + \lambda \sum_{j=1}^{p} ||\beta_{j}||^{2}, \quad (2)$$

 λ is the tuning parameter which controls the amount of shrinkage and $|| \cdot || = || \cdot ||_2$ is the L_2 norm.

- For γ < 2, it shrinks the coefficient towards zero, and depending on the value of λ, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the L₁ penalized least squares estimator, which is obtained when γ = 1.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)

- For γ < 2, it shrinks the coefficient towards zero, and depending on the value of λ, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the L_1 penalized least squares estimator, which is obtained when $\gamma = 1$.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)

- For γ < 2, it shrinks the coefficient towards zero, and depending on the value of λ, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the L₁ penalized least squares estimator, which is obtained when γ = 1.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)

- For γ < 2, it shrinks the coefficient towards zero, and depending on the value of λ, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the L₁ penalized least squares estimator, which is obtained when γ = 1.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)

- For γ < 2, it shrinks the coefficient towards zero, and depending on the value of λ, it sets some of the coefficients to exactly zero.
- The procedure combines variable selection and shrinking of the coefficients of a penalized regression.
- An important member of the penalized least squares family is the L₁ penalized least squares estimator, which is obtained when γ = 1.
- This is known as the Least Absolute Shrinkage and Selection Operator (LASSO): Tibshirani(1996)

Penalty Estimation Strategy

• LASSO is closely related to the ridge regression and its solutions are similarly obtained by replacing the squared penalty $||\beta_j||^2$ in the ridge solution (3) with the absolute penalty $||\beta_j||_1$ in the LASSO–

$$\hat{\beta}^{\text{LASSO}} = \arg\min_{\beta} \left\| \left| \boldsymbol{y} - \sum_{j=1}^{p} \boldsymbol{X}_{j} \beta_{j} \right\|^{2} + \lambda \sum_{j=1}^{p} ||\beta_{j}||_{1}.$$
(3)

Good Strategy if Model is **Truly** Sparse

S. Ejaz Ahmed Big Data Analysis

Penalty Estimation Strategy

 LASSO is closely related to the ridge regression and its solutions are similarly obtained by replacing the squared penalty ||β_j||² in the ridge solution (3) with the absolute penalty ||β_j||₁ in the LASSO–

$$\hat{\boldsymbol{\beta}}^{\text{LASSO}} = \arg\min_{\boldsymbol{\beta}} \left\| \boldsymbol{y} - \sum_{j=1}^{p} \boldsymbol{X}_{j} \boldsymbol{\beta}_{j} \right\|^{2} + \lambda \sum_{j=1}^{p} ||\boldsymbol{\beta}_{j}||_{1}.$$
(3)

Good Strategy if Model is Truly Sparse

S. Ejaz Ahmed Big Data Analysis

Penalty Estimation Family Ever Growing!!

Adaptive LASSO (aLASSO)

Elastic Net Penalty

Minimax Concave Penalty (MCP)

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.

• All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.

• aLASSO, SCAD, and MCP are Oracle (asymptoticaly).

- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.

- All penalty estimators may not provide an estimator with both estimation consistency and variable selection consistency simultaneously.
- aLASSO, SCAD, and MCP are Oracle (asymptoticaly).
- Asymptotic properties are based on assumptions on both true model and designed covariates.
- Sparsity in the model (most coefficients are exactly 0), few are not
- Nonzero coefficients are big enough to to be separated from zero ones.

- In genetic micro-array studies, n is measured in hundreds, the number of features p per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension *p* becomes extremely large compared with sample size *n*.
- There are still challenging problems when *p* grows at a non-polynomial rate with *n*.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.

- In genetic micro-array studies, n is measured in hundreds, the number of features p per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension *p* becomes extremely large compared with sample size *n*.
- There are still challenging problems when *p* grows at a non-polynomial rate with *n*.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.

- In genetic micro-array studies, n is measured in hundreds, the number of features p per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension *p* becomes extremely large compared with sample size *n*.
- There are still challenging problems when *p* grows at a non-polynomial rate with *n*.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.

- In genetic micro-array studies, n is measured in hundreds, the number of features p per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension *p* becomes extremely large compared with sample size *n*.
- There are still challenging problems when *p* grows at a non-polynomial rate with *n*.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.

- In genetic micro-array studies, n is measured in hundreds, the number of features p per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension *p* becomes extremely large compared with sample size *n*.
- There are still challenging problems when *p* grows at a non-polynomial rate with *n*.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.

- In genetic micro-array studies, n is measured in hundreds, the number of features p per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension *p* becomes extremely large compared with sample size *n*.
- There are still challenging problems when *p* grows at a non-polynomial rate with *n*.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.

- In genetic micro-array studies, n is measured in hundreds, the number of features p per sample can exceed millions!!!
- 22,500 unique proteins, implies about 253,000,000 possible protein-protein interactions. So far 42,000 are identified.
- penalty estimators may not be efficient when the dimension *p* becomes extremely large compared with sample size *n*.
- There are still challenging problems when *p* grows at a non-polynomial rate with *n*.
- Non-polynomial dimensionality poses substantial computational challenges.
- The developments in the arena of penalty estimation is still infancy.

Pretest and Shrinkage Strategies are Useful in this Situation

Extension and Comparison with non-penalty Estimators

- Ahmed et al. (2008, 2009) for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014) for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.

Pretest and Shrinkage Strategies are Useful in this Situation

Extension and Comparison with non-penalty Estimators

- Ahmed et al. (2008, 2009) for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014) for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.

Pretest and Shrinkage Strategies are Useful in this Situation

Extension and Comparison with non-penalty Estimators

• Ahmed et al. (2008, 2009) for partially linear models.

- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014) for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.

Pretest and Shrinkage Strategies are Useful in this Situation

Extension and Comparison with non-penalty Estimators

- Ahmed et al. (2008, 2009) for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014) for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.

Pretest and Shrinkage Strategies are Useful in this Situation

Extension and Comparison with non-penalty Estimators

- Ahmed et al. (2008, 2009) for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014) for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.
Can Noise be Septated from Signals?

Pretest and Shrinkage Strategies are Useful in this Situation

- Ahmed et al. (2008, 2009) for partially linear models.
- Fallahpour, Ahmed and Doksum (2010) and Ahmed and Fallahpour (2014) for partially linear models with Random Coefficient autoregressive Errors.
- Ahmed and Fallahpour (2012) for Quasi-likelihood models.
- Ahmed et al. (2012) for Weibull censored regression models.

- S. E. Ahmed (2014). *Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation.* Springer.
- S. E. Ahmed (Editor). *Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.*

- S. E. Ahmed (2014). *Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation.* Springer.
- S. E. Ahmed (Editor). *Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.*

- S. E. Ahmed (2014). *Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation.* Springer.
- S. E. Ahmed (Editor). Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.

- S. E. Ahmed (2014). *Penalty, Pretest and Shrinkage Estimation: Variable Selection and Estimation.* Springer.
- S. E. Ahmed (Editor). Perspectives on Big Data Analysis: Methodologies and Applications. To be published by Contemporary Mathematics, a co-publication of American Mathematical Society and CRM, 2014.

- The classical shrinkage estimation methods are limited to fixed *p*.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of \sqrt{n} .
- When *p_n > n*, a component-wise consistent estimator of *β_n* is not available since *β_n* is not identifiable.
- Here β_n is not identifiable in the sense that there always exist two different estimations of β_n , $\beta_n^{(1)}$ and $\beta_n^{(2)}$, such that $\mathbf{x}'_i \beta_n^{(1)} = \mathbf{x}'_i \beta_n^{(2)}$ for $1 \le i \le n$.

- The classical shrinkage estimation methods are limited to fixed *p*.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of \sqrt{n} .
- When *p_n > n*, a component-wise consistent estimator of β_n is not available since β_n is not identifiable.
- Here β_n is not identifiable in the sense that there always exist two different estimations of β_n , $\beta_n^{(1)}$ and $\beta_n^{(2)}$, such that $\mathbf{x}'_i \beta_n^{(1)} = \mathbf{x}'_i \beta_n^{(2)}$ for $1 \le i \le n$.

- The classical shrinkage estimation methods are limited to fixed *p*.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of \sqrt{n} .
- When *p_n > n*, a component-wise consistent estimator of β_n is not available since β_n is not identifiable.
- Here β_n is not identifiable in the sense that there always exist two different estimations of β_n , $\beta_n^{(1)}$ and $\beta_n^{(2)}$, such that $\mathbf{x}'_i \beta_n^{(1)} = \mathbf{x}'_i \beta_n^{(2)}$ for $1 \le i \le n$.

- The classical shrinkage estimation methods are limited to fixed *p*.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of \sqrt{n} .
- When *p_n > n*, a component-wise consistent estimator of *β_n* is not available since *β_n* is not identifiable.
- Here β_n is not identifiable in the sense that there always exist two different estimations of β_n , $\beta_n^{(1)}$ and $\beta_n^{(2)}$, such that $\mathbf{x}'_i \beta_n^{(1)} = \mathbf{x}'_i \beta_n^{(2)}$ for $1 \le i \le n$.

- The classical shrinkage estimation methods are limited to fixed *p*.
- The asymptotic results depend heavily on a maximum likelihood full estimation with component-wise consistency at rate of \sqrt{n} .
- When *p_n > n*, a component-wise consistent estimator of *β_n* is not available since *β_n* is not identifiable.
- Here β_n is not identifiable in the sense that there always exist two different estimations of β_n , $\beta_n^{(1)}$ and $\beta_n^{(2)}$, such that $\mathbf{x}'_i \beta_n^{(1)} = \mathbf{x}'_i \beta_n^{(2)}$ for $1 \le i \le n$.

- we write the p_n-dimensional coefficients vector
 β_n = (β'_{1n}, β'_{2n})', where β_{1n} is the coefficient vector for main covariates, β_{2n} include all nuisance parameters.
- Sub-vectors β_{1n} , β_{2n} , have dimensions p_{1n} , p_{2n} , respectively, where $p_{1n} \le n$ and $p_{1n} + p_{2n} = p_n$.
- Let X_{1n} and X_{2n} be the sub-matrices of X_n corresponding to β_{1n} and β_{2n}, respectively.
- Let us assume true parameter vector

$$\beta_0 = (\beta_{01}, \cdots, \beta_{0p_n})' = (\beta'_{10}, \beta'_{20})'.$$

Shrinkage Estimator for High Dimensional Data

- Let S_{10} and S_{20} represent the corresponding index sets for β_{10} and β_{20} , respectively.
- Specifically, S_{10} includes important predictors and S_{20} includes sparse and weak signals satisfying the following assumption.

(A0)
$$|\beta_{0j}| = O(n^{-\varsigma})$$
, for $\forall j \in S_{20}$, where $\varsigma > 1/2$ does not change with *n*.

Condition (A0) is considered to be the sparsity of the model. A simpler representation for the finite sample is that β_{0j} = 0 ∀j ∈ S₂₀, that is, most coefficients are 0 exactly.

Shrinkage Estimator for High Dimensional Data

A Class of Submodels

- Predictors indexed by *S*₁₀ are used to construct a submodel.
- However, other predictors, especially ones in *S*₂₀ may also make some contributions to the response and cannot be ignored.

Consider

UPI or AI :
$$(\beta'_{20})' = \mathbf{0}_{p_{2n}}$$
.

We make the following assumptions on the random error and design matrix of the true model:

- (A1) The random error ϵ_i 's are independent and identically distributed with mean 0 and variance $0 < \sigma^2 < \infty$. Further, $E(\epsilon_i^m) < \infty$, for an even integer *m* not depending on *n*.
- (A2) $\rho_{1n} > 0$, for all *n*, the smallest eigenvalue of C_{12n}

Under (A1-A2) and UPI/AE, the submodel estimator (SME) of β_{1n} is defined as

$$\hat{\boldsymbol{\beta}}_{1n}^{SM} = (\mathbf{X}_{1n}'\mathbf{X}_{1n})^{-1}\mathbf{X}_{1n}'\mathbf{y}.$$

We estimate an estimator of β_n by minimizing a partial penalized objective function,

$$\hat{\boldsymbol{\beta}}(\boldsymbol{r}_n) = argmin\{\|\mathbf{y} - \mathbf{X}_{1n}\boldsymbol{\beta}_{1n} - \mathbf{X}_{2n}\boldsymbol{\beta}_{2n}\|^2 + \boldsymbol{r}_n\|\boldsymbol{\beta}_{2n}\|^2\}$$

where " $\|\cdot\|$ " is the ℓ_2 norm and $r_n > 0$ is a tuning parameter.

Since $p_n >> n$ and under the sparsity assumption Define

$$a_n = c_1 n^{-\omega}, \quad 0 < \omega \le 1/2, \ c_1 > 0.$$

We define a weighted ridge estimator of β_n is denoted as

$$\hat{\beta}_{n}^{WR}(r_{n}, a_{n}) = \begin{pmatrix} \hat{\beta}_{1n}^{WR}(r_{n}) \\ \hat{\beta}_{2n}^{WR}(r_{n}, a_{n}) \end{pmatrix}, \text{ where}$$
$$\hat{\beta}_{1n}^{WR}(r_{n}) = \hat{\beta}_{1n}(r_{n})$$

and for $j \notin S_{10}$,

$$\hat{\beta}_{j}^{\text{WR}}(r_n, a_n) = \begin{cases} \hat{\beta}_j(r_n, a_n), & \hat{\beta}_j(r_n, a_n) > a_n; \\ 0, & \text{otherwise.} \end{cases}$$

- We call β̂(r_n, a_n) as a weighted ridge estimator from two aspects.
- We use a weighted ridge instead of ridge penalty for the HD shrinkage estimation strategy since we do not want to generate some additional biases caused by an additional penalty on β_{1n} if we already have a candidate subset model.
- Here $\hat{\beta}_{1n}^{WR}(r_n)$ changes with r_n and $\hat{\beta}_{2n}^{WR}(r_n, a_n)$ changes with both r_n and a_n .
- For the notation's convenience, we denote the weighted ridge estimators as $\hat{\beta}_{1n}^{WR}$ and $\hat{\beta}_{2n}^{WR}$.

A Candidate HD Shrinkage Estimator

A HD shrinkage estimators (HD-SE) $\hat{\beta}_{1n}^{S}$ is

$$\hat{\beta}_{1n}^{S} = \hat{\beta}_{1n}^{WR} - (h-2)T_n^{-1}(\hat{\beta}_{1n}^{WR} - \hat{\beta}_{1n}^{SM}),$$

h > 2 is the number of nonzero elements in $\hat{\beta}_{2n}^{WR}$

$$T_n = (\hat{\beta}_2^{WR})' (\mathbf{X}_2' \mathbf{M}_1 \mathbf{X}_2) \hat{\beta}_2^{WR} / \hat{\sigma}^2, \qquad (4)$$
$$\mathbf{M}_1 = \mathbf{I}_n - \mathbf{X}_{1n} (\mathbf{X}_{1n}' \mathbf{X}_{1n})^{-1} \mathbf{X}_{1n}'$$

- $\hat{\sigma}^2$ is a consistent estimator of σ^2 .
- For example, we can choose $\hat{\sigma}^2 = \sum_{i=1}^{n} (y_i \mathbf{x}'_i \hat{\beta}^{SM})^2 / (n-1)$ under UPI or AI.

A HD positive shrinkage estimator (HD-PSE),

$$\hat{\beta}_{1n}^{PSE} = \hat{\beta}_{1n}^{WR} - ((h-2)T_n^{-1})_1(\hat{\beta}_{1n}^{WR} - \hat{\beta}_{1n}^{SM}),$$

where $(a)_1 = 1$ and *a* for a > 1 and $a \le 1$, respectively.

Let $s_n^2 = \sigma^2 \mathbf{d}'_n \mathbf{\Sigma}_n^{-1} \mathbf{d}_n$ for any $p_{12n} \times 1$ vector \mathbf{d}_n satisfying $\|\mathbf{d}_n\| \leq 1$.

$$n^{1/2} \boldsymbol{s}_n^{-1} \mathbf{d}'_n (\hat{\boldsymbol{\beta}}_{12n}^{WR} - \boldsymbol{\beta}_{120}) = n^{-1/2} \boldsymbol{s}_n^{-1} \sum_{i=1}^n \epsilon_i \mathbf{d}'_n \boldsymbol{\Sigma}_n^{-1} \mathbf{z}_i + o_P(1)$$
$$\underline{d}_i \mathcal{N}(0, 1).$$

Define

$$\begin{split} \boldsymbol{\Sigma}_{n11} &= \lim_{n \to \infty} \mathbf{X}'_{1n} \mathbf{X}_{1n} / n, \quad \boldsymbol{\Sigma}_{n22} &= \lim_{n \to \infty} \mathbf{X}'_{2n} \mathbf{X}_{2n} / n, \\ \boldsymbol{\Sigma}_{n12} &= \lim_{n \to \infty} \mathbf{X}'_{1n} \mathbf{X}_{2n} / n, \quad \boldsymbol{\Sigma}_{n21} &= \lim_{n \to \infty} \mathbf{X}'_{2n} \mathbf{X}_{1n} / n, \\ \boldsymbol{\Sigma}_{n22.1} &= \lim_{n \to \infty} n^{-1} \mathbf{X}'_{2n} \mathbf{X}_{2n} - \mathbf{X}'_{2n} \mathbf{X}_{1n} (\mathbf{X}'_{1n} \mathbf{X}_{1n})^{-1} \mathbf{X}'_{1n} \mathbf{X}_{2n} \\ \boldsymbol{\Sigma}_{n11.2} &= \lim_{n \to \infty} n^{-1} \mathbf{X}'_{1n} \mathbf{X}_{1n} - \mathbf{X}'_{1n} \mathbf{X}_{2n} (\mathbf{X}'_{2n} \mathbf{X}_{2n})^{-1} \mathbf{X}'_{2n} \mathbf{X}_{1n} \end{split}$$

Asymptotic Distributional Risk (ADR)

$$\mathcal{K}_n: \beta_{20} = n^{-1/2} \delta$$
 and $\beta_{30} = \mathbf{0}_{p_{3n}},$
 $\delta = (\delta_1, \delta_2, \cdots, \delta_{p_{2n}})' \in \mathfrak{R}^{p_{2n}}, \delta_j$ is fixed.

. ...

• Define $\Delta_n = \delta' \Sigma_{n22.1} \delta$,

- $n^{1/2} \mathbf{d}'_{1n} s_{1n}^{-1} (\beta_{1n}^* \beta_{10})$ is asymptotically normal under $\{K_n\}$, where $s_{1n}^2 = \sigma^2 \mathbf{d}'_{1n} \Sigma_{n11.2}^{-1} \mathbf{d}_{1n}$.
- The asymptotic distributional risk (ADR) of $\mathbf{d}'_{1n}\beta^*_{1n}$ is

$$ADR(\mathbf{d}'_{1n}\beta^*_{1n}) = \lim_{n \to \infty} E\{[n^{1/2}s_{1n}^{-1}\mathbf{d}'_{1n}(\beta^*_{1n} - \beta_{10})]^2\}.$$

Asymptotic Distributional Risk

Mathematical Proof

Under regularity conditions and K_n , and suppose there exists $0 \le c \le 1$ such that $c = \lim_{n \to \infty} s_{1n}^{-2} \mathbf{d}'_{1n} \Sigma_{n1}^{-1} \mathbf{d}_{1n}$, we have $ADR(\mathbf{d}'_{1n}\hat{\beta}^{WR}_{1n}) = 1,$ (5a) $ADR(\mathbf{d}_{1,c}^{\prime}\hat{\beta}_{1,c}^{SM}) = 1 - (1 - c)(1 - \Delta_{\mathbf{d}_{1,c}}),$ (5b) ADR $(\mathbf{d}_{12}^{\prime}\hat{\boldsymbol{\beta}}_{12}^{S}) = 1 - E[\boldsymbol{q}_{1}(\mathbf{z}_{2} + \boldsymbol{\delta})],$ (5c) ADR $(\mathbf{d}'_{1n}\hat{\boldsymbol{\beta}}^{PSE}_{1n}) = 1 - E[q_2(\mathbf{z}_2 + \delta)],$ (5d) $\Delta_{\mathbf{d}_{1n}} = \frac{\mathbf{d}_{1n}' (\Sigma_{n11}^{-1} \Sigma_{n12} \delta \delta' \Sigma_{n21} \Sigma_{n11}^{-1}) \mathbf{d}_{1n}}{\mathbf{d}_{1n}' (\Sigma_{n11}^{-1} \Sigma_{n12} \Sigma_{n21}^{-1} \Sigma_{n21}^{-1} \Sigma_{n21}^{-1}) \mathbf{d}_{1n}},$ $s_{2n}^{-1} \mathbf{d}'_{2n} \mathbf{z}_2 \to N(0, 1)$ $\mathbf{d}_{2n} = \sum_{n \geq 1} \sum_{n \geq 1}^{-1} \mathbf{d}_{1n}$ $s_{2n}^2 = \mathbf{d}'_{2n} \Sigma_{n22,1}^{-1} \mathbf{d}_{2n}$

Asymptotic Distributional Risk

Mathematical Proof

$$g_{1}(\mathbf{x}) = \lim_{n \to \infty} (1 - c) \frac{p_{2n} - 2}{\mathbf{x}' \Sigma_{n22.1} \mathbf{x}} \left[2 - \frac{\mathbf{x}'((p_{2n} + 2)\mathbf{d}_{2n}\mathbf{d}'_{2n})\mathbf{x}}{s_{2n}^{2} \mathbf{x}' \Sigma_{n22.1} \mathbf{x}} \right],$$

$$g_{2}(\mathbf{x}) = \lim_{n \to \infty} \frac{p_{2n} - 2}{\mathbf{x}' \Sigma_{n22.1} \mathbf{x}} \left[(1 - c) \left(2 - \frac{\mathbf{x}'((p_{2n} + 2)\mathbf{d}_{2n}\mathbf{d}'_{2n})\mathbf{x}}{s_{2n}^{2}\mathbf{x}' \Sigma_{n22.1} \mathbf{x}} \right) \right] \\ I(\mathbf{x}' \Sigma_{n22.1} \mathbf{x} \ge p_{2n} - 2) \\ + \lim_{n \to \infty} [(2 - s_{2n}^{-2} \mathbf{x}' \delta_{2n} \delta'_{2n} \mathbf{x})(1 - c)] I(\mathbf{x}' \Sigma_{n22.1} \mathbf{x} \le p_{2n} - 2)]$$

By Ignoring the Bias, it will Not go away!

- Submodel estimator provided by some existing variable selection techniques when $p_n \gg n$ are subject to BIAS.
- The prediction performance can be improved by the shrinkage strategy.
- Particulary when an under-fitted submodel is selected by an aggressive penalty parameter.

Moral of the Story

By Ignoring the Bias, it will Not go away!

- When *p* ≫ *n*, we assume the true model is sparse in the sense that most coefficients goes to 0 when *n* → ∞.
- However, it is realistic to assume that some β_j may be small, but not exactly 0.
- Such predictors with small amount of influence on the response variable are often ignored incorrectly in HD variable selection methods.
- We borrow (re-gain) some information from those predictors using the shrinkage strategy to improve the prediction performance.

- In all experiments, ε_i's are simulated from i.i.d standard normal random variables, x_{is} = (ξ¹_(is))² + ξ²_(is), where ξ¹_(is) and ξ²_(is), i = 1, · · · , n, s = 1, · · · , p_n are also independent copies of standard normal distribution.
- In all sampling experiments, we let $p_n = n^{\alpha}$ for different sample size *n*, where α changes from 1 to 1.8 with an increment of 0.2. The HD-PSE is computed for $r_n = p_n^{1/8}$ and $a_n = 0.1 n^{-1/3}$.

Simulation Results

Engineering Proof

- The performance of an estimator of β will be appraised using the mean squared error (MSE) criterion.
- All computations were conducted using the **R** statistical software.
- We have numerically calculated the relative MSE of the estimators with respect to $\hat{\beta}^{WR}$ by simulation.
- The simulated relative efficiency (SRE) of the estimator β^{\diamond} to the maximum likelihood estimator $\hat{\beta}^{FM}$ is denoted by

$$\mathsf{SRE}(\hat{\beta}^{\mathit{FM}}:\beta^\diamond) = rac{\mathsf{MSE}(\hat{\beta}^{\mathit{WR}})}{\mathsf{MSE}(\beta^\diamond)}.$$

• A SRE larger than one indicates the degree of superiority of the estimator β^{\diamond} over $\hat{\beta}^{WR}$.

Engineering Proof

Relative Performance

- We let $\beta_{10} = (1.5, 3, 2)'$ be fixed for every design.
- Let $\Delta^* = \|\beta_{20} \mathbf{0}\|^2$ varying between 0 and 4.
- We choose *n* = 30 or 100.

Table: Simulated RMSEs

٠

(<i>n</i> , <i>p</i>)	Δ^*	$\hat{oldsymbol{eta}}_{1n}^{SM}$	\hat{eta}_{1n}^{PSE}	(<i>n</i> , <i>p</i>)	Δ^*	\hat{eta}_{1n}^{SM}	$\hat{\beta}_{1n}^{PSE}$
	0.00	16.654	4.101		0.00	8.953	5.385
	0.05	8.202	3.446		0.05	4.456	3.794
	0.20	2.855	2.610		0.20	1.551	3.216
	0.25	2.074	2.437		0.25	1.422	2.833
	0.30	1.857	2.180		0.30	1.091	2.459
(30, 30)	0.35	1.643	1.949	(30, 59)	0.35	0.986	2.447
	0.80	0.649	1.506		0.80	0.542	1.601
	2.50	0.232	1.160		2.50	0.234	1.171
	3.30	0.170	1.095		3.30	0.210	1.108
	0.00	12.672	4.260		0.00	5.546	5.388
	0.05	2.546	3.538		0.05	1.255	1.900
	0.10	1.129	3.256		0.15	0.441	1.322
	0.20	0.628	2.948		0.20	0.361	1.382
	0.25	0.481	3.366		0.25	0.316	1.358
(100, 158)	0.40	0.311	2.272	(100, 398)	0.40	0.198	1.543
	1.40	0.110	1.500		1.40	0.096	1.826
	3.10	0.066	1.181		3.10	0.079	1.304
	3.50	0.060	1.217		3.50	0.075	1.297

Figure: The top three panels (a-c) are for n = 30 and $p_n = 30, 59, 117$ from the left to the right. The bottom panels (d-f) are for n = 100 and $p_n = 158, 251, 398$ from the left to the right. Solid curves: RMSE $(\hat{\beta}_{1n}^{SM})$; Dashed curves: RMSE $(\hat{\beta}_{1n}^{PSE})$.

Shrinkage Versus Penalty Estimators

Engineering Solution: Simulation Results

 Performance of HD-PSE relative to penalty estimators including Lasso, ALasso, SCAD, MCP and Threshold Ridge (TR).

• We let
$$\beta_{10} = (1.5, 3, 2, \underbrace{0.1, \cdots, 0.1}_{p_{1n}-3})', \beta_{20} = \mathbf{0}'_{p_{2n}}.$$

- The model includes some predictors with weak signals. We consider n = 30 and p_{1n} = 3, 4, 10, 20.
- We choose a = 3.7 and $\gamma = 3$ for SCAD and MCP, respectively.
- For TR, we choose $\alpha_n = c_6 n^{-1/3}$ and $\lambda = c_7 (\log \log n)^3 / \alpha_n^2$, where c_6 and c_7 are two tuning parameters.
- All tuning parameters are chosen using the generalized cross validation.

Figure: RMSEs for n = 30. Plots (a-d) are for $p_1 = 3, 4, 10, 20$, respectively.

p_1	pn	$\hat{oldsymbol{eta}}_{1n}^{SM}$	$\hat{\beta}_{1n}^{PSE}$	$\hat{\boldsymbol{\beta}}_{1n}^{\mathrm{SCAD}}$	$\hat{\beta}_{1n}^{\text{MCP}}$	$\hat{oldsymbol{eta}}_{1n}^{\mathrm{ALasso}}$	$\hat{m{eta}}_{1n}^{\mathrm{Lasso}}$	$\hat{\beta}_{1n}^{\mathrm{TR}}$
3	30	23.420	8.740	14.486	14.247	11.399	3.130	1.097
	59	9.900	6.951	7.588	7.499	6.244	1.257	0.015
	231	4.292	4.291	2.568	2.622	2.714	0.166	0.003
	456	3.977	3.977	1.739	1.576	2.059	0.099	0.002
4	30	15.055	6.882	11.809	11.291	9.528	2.830	0.993
	59	6.954	4.933	5.260	5.204	4.469	0.966	0.019
	231	3.605	3.605	2.222	2.154	2.045	0.167	0.004
	456	3.184	3.184	1.648	1.436	1.703	0.102	0.003
10	30	7.528	4.526	1.232	1.469	2.391	1.497	1.001
	59	3.899	3.534	0.493	0.538	0.746	0.321	0.032
	231	2.212	2.212	0.104	0.083	0.117	0.034	0.005
	456	1.997	1.997	0.052	0.032	0.050	0.017	0.003
20	30	4.603	3.139	0.099	0.128	0.892	0.599	0.981
	59	2.231	2.194	0.016	0.018	0.067	0.031	0.013
	231	1.489	1.489	0.002	0.002	0.003	0.002	0.002
	456	1.392	1.392	0.001	0.001	0.002	0.001	0.001
S. Ejaz Ahmed Big Data Analysis								

A Threshold ridge (TR) for $1 \le j \le p_n$ of β_j is given by (Shao and Deng (2008))

$$\widehat{\beta}_{j}^{\mathrm{TR}} = \begin{cases} \widetilde{\beta}_{j}, & |\widetilde{\beta}_{j}| > a_{n}, \\ 0, & |\widetilde{\beta}_{j}| \le a_{n}, \end{cases}$$

where

$$\widetilde{\beta}_n = \arg\min_{\beta} \left\{ \sum_{i=1}^n \left(y_i - \sum_{j=1}^{p_n} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p_n} \beta_j^2 \right\}$$

and $a_n = cn^{-\omega}$ for $0 < \omega < 1/2$ and c > 0.

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{SM}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller *p*_n.
- HD-PSE performs better than penalty estimators for larger p_n .
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{SM}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller *p*_n.
- HD-PSE performs better than penalty estimators for larger p_n .
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{SM}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller p_n.
- HD-PSE performs better than penalty estimators for larger p_n .
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{SM}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller p_n.
- HD-PSE performs better than penalty estimators for larger *p_n*.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{SM}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller p_n.
- HD-PSE performs better than penalty estimators for larger *p_n*.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{SM}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller p_n.
- HD-PSE performs better than penalty estimators for larger p_n.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.

- The submodel estimator dominates all other estimators in the class, since $\hat{\beta}^{SM}$ is computed based on the true submodel.
- SCAD and MCP work better than the HD-PSE for smaller p_n.
- HD-PSE performs better than penalty estimators for larger *p_n*.
- Penalty estimators are even less efficient than the weighted ridge estimate.
- This phenomenon can be explained by the existence of predictors with weak effects, which cannot be separated from zero effects using Lasso-type methods.
- The predictors are designed to be correlated, the weighted ridge estimator can generate a better estimation at the starting point.

- We apply the proposed HD-PSE strategy to the data set reported in Scheetz et al. (2006) and also analyzed by Huang, Ma and Zhang (2008).
- In this dataset, 120 twelve-week-old male offsprings of F1 animals were selected for tissue harvesting from the eyes for microarray analysis.
- The microarrays used to analyze the RNA from the eyes of these F2 animals contain over 31,042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array).

- Huang, Ma and Zhang (2008) studied a total of 18,976 probes including gene TRIM32, which was recently found to cause Bardet-Biedl syndrome (Chiang et al. (2006)), a genetically heterogeneous disease of multiple organ systems including the retina.
- A regression analysis was conducted to find the probes among the remaining 18,975 probes that are most related to TRIM32 (Probe ID: 1389163_at). Huang et al (2008) found 19 and 24 probes based on Lasso and adaptive Lasso methods, respectively.
- We compute HD-PSEs based on two different candidate subset models consisting of 24 and 19 probes selected from Lasso and adaptive Lasso, respectively.

- In the largest full set model, we consider at most 1,000 probes with the largest variances. Other smaller full set model with top *p_n* probes are also considered.
- Here we choose different *p_n*'s between 200 and 1,000.
- The relative prediction error (RPE) of the estimator $\beta_{\mathcal{J}}^*$ relative to weighted ridge estimator $\hat{\beta}_{\mathcal{J}}^{WR}$ is computed as follows

$$\operatorname{RPE}(\boldsymbol{\beta}_{\mathcal{J}}^{*}) = \frac{\sum_{i=1}^{n} \|\mathbf{y} - \sum_{j \in \mathcal{J}} \mathbf{X}_{\mathcal{J}} \hat{\boldsymbol{\beta}}_{\mathcal{J}}^{WR} \|^{2}}{\sum_{i=1}^{n} \|\mathbf{y} - \sum_{j \in \mathcal{J}} \mathbf{X}_{\mathcal{J}} \boldsymbol{\beta}_{\mathcal{J}}^{*} \|^{2}},$$

where ${\cal J}$ is the index of the submodel including either 24 or 19 elements.

Envoi

- We generalized the classical Stein's shrinkage estimation to a high-dimensional sparse model with some predictors with weak signals.
- When *p_n* grows with *n* quickly, it is reasonable to suspect that most predictors do not contribute, that is model is sparse.
- We proposed a HD shrinkage estimation strategy by shrinking a weighted ridge estimator in the direction of a candidate submodel.

Envoi

- Existing penalized regularization approaches have some advantages of generating a parsimony sparse model, but tends to ignore the possible small contributions from some predictors.
- Lasso-type methods provide estimation and prediction only based on the selected candidate submodel, which is often inefficient with the existence of mild or weak signals.
- Our proposed HD shrinkage strategy takes into account possible contributions of all other possible nuisance parameters and has dominant prediction performances over submodel estimates generated from Lasso-type methods, which depend strongly on the sparsity assumption of the true model.

Long Live L₂ Shrinkage!

World's Data is Growing Exponentially!

- How to Acquire, Manage, Process, Analyze and Make Sense of Big Data?
- Big data is the future of Science and Trans-disciplinary research in Statistical Sciences is a must.
- "Think of big data as an epic wave gathering now, starting to crest," says the Harvard Business Review. "If you want to catch it, you need people who can surf"
- By 2015 there will be 4.4 M jobs available globally for Big Data analysis.
- Are we training "Wave Jockeys"?

World's Data is Growing Exponentially!

- A greater collaboration between statisticians, computer scientists and social scientists (Facebook clicks, Netflix queues, and GPS data, a few to mention, 12 billions devices are connected to internet).
- Data is never neutral and unbiased, we must pull expertise across a host of fields to combat the biases in the estimation.
- Need to be careful with algorithmic based predictions. For example, protein interaction prediction.
- "The purpose of computing is insight, not numbers." R.W. Hamming, 1962.
- "Big Data can't tell us why easily it can only tell us the what, but most often that's enough." Mayer-Schonberger, CBC Radio.

- Study classical problems Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual

- Study classical problems Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual

- Study classical problems Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual

- Study classical problems Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual

- Study classical problems Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual

- Study classical problems Classical assumptions
- Exact/Analytic Solutions
- Low-dimensional Data Analysis
- Work Alone or in Small Teams
- Glory of the Individual

- Complex Problems, Approximate Solutions
- Visualizing Complex Data Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks Trans-disciplinary Research
- Glory of the Research Team

- Complex Problems, Approximate Solutions
- Visualizing Complex Data Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks Trans-disciplinary Research
- Glory of the Research Team

- Complex Problems, Approximate Solutions
- Visualizing Complex Data Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks Trans-disciplinary Research
- Glory of the Research Team

- Complex Problems, Approximate Solutions
- Visualizing Complex Data Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks Trans-disciplinary Research
- Glory of the Research Team

- Complex Problems, Approximate Solutions
- Visualizing Complex Data Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks Trans-disciplinary Research
- Glory of the Research Team

- Complex Problems, Approximate Solutions
- Visualizing Complex Data Use of Technology
- High-Dimensional Statistical Inference
- Think Tanks Trans-disciplinary Research
- Glory of the Research Team

Thanks a bundle!

Thank you and thanks to organizers!